预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届广西玉林高中高二数学第一学期期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知p:,q:,那么p是q的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件2、已知椭圆和双曲线有共同焦点,是它们一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值为A.3B.2C.D.3、过点且垂直于的直线方程为()A.B.C.D.4、已知随机变量服从正态分布,且,则()A.0.1B.0.2C.0.3D.0.45、在长方体中,,,分别是棱,的中点,则异面直线,的夹角为()A.B.C.D.6、在等比数列中,,是方程的两个实根,则()A.-1B.1C.-3D.37、已知公差为的等差数列满足,则()AB.C.D.8、在空间直角坐标系中,为直线的一个方向向量,为平面的一个法向量,且,则()A.B.C.D.9、已知,,,则下列判断正确的是()A.B.C.D.10、如图,、分别为椭圆的左、右焦点,为椭圆上的点,是线段上靠近的三等分点,为正三角形,则椭圆的离心率为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、命题“矩形的对角线相等”的否命题是________.12、函数的单调递减区间是____13、已知数列满足,则的前20项和___________.14、《九章算术》中的“两鼠穿墙题”是我国数学的古典名题.“今有城墙厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半……”题意是:“两只老鼠从城墙的两边相对分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半……”则小老鼠第三天穿城墙______尺;若城墙厚40尺,则至少在第________天相遇15、已知直线与圆交于两点,则面积的最大值为__________.16、有公共焦点,的椭圆和双曲线的离心率分别为,,点为两曲线的一个公共点,且满足,则的值为______三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l的方程18、如图四棱锥P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等边三角形.(1)设面PAB面PDC=l,证明:l//平面ABCD;(2)线段PC内是否存在一点E,使面ADE与面ABCD所成角的余弦值为,如果存在,求λ=的值,如果不存在,请说明理由.19、为了了解某工厂生产的产品情况,从该工厂生产的产品随机抽取了一个容量为200的样本,测量它们的尺寸(单位:),数据分为,,,,,,七组,其频率分布直方图如图所示.(1)根据频率分布直方图,求200件样本中尺寸在内的样本数;(2)记产品尺寸在内为等品,每件可获利6元;产品尺寸在内为不合格品,每件亏损3元;其余的为合格品,每件可获利4元.若该机器一个月共生产2000件产品.以样本的频率代替总体在各组的频率,若单月利润未能达到9000元,则需要对该工厂设备实施升级改造.试判断是否需要对该工厂设备实施升级改造.20、已知圆C过两点,,且圆心C在直线上(1)求圆C的方程;(2)过点作圆C的切线,求切线方程21、已知函数(1)讨论函数的单调性;(2)若对任意的,都有成立,求的取值范围参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】若p成立则q成立且若q成立不能得到p一定成立,p是q充分不必要条件.【详解】因为>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要条件.故选:C.2、答案:D【解析】设椭圆长半轴长为a1,双曲线的半实轴长a2,焦距2c.根据椭圆及双曲线的定义可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根据余弦定理可得到,利用基本不等式可得结论【详解】如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,设|F1F2|=2c,∠F1PF2=,则:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化简得:a12+3a22=4c2,该式可变成:,∴≥2∴,故选D【点睛】本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义求焦点三角形三边长,考查利用基本不等式求最值问题,属于中档题3、答案:B【解析】求出直线l的斜率,再借助垂直关系的条件即可求解作答.【详解】直线的斜率为,而所求直线垂直于直线l,则所求直线斜率为,于是有:,即,所以所求直线方程为.故选:B4、答案:A【解析】利用正态分布的对称性和概