预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届广西玉林高中高二数学期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知点,,直线:与线段相交,则实数的取值范围是()A.或B.或C.D.2、已知函数的图象在点处的切线与直线平行,若数列的前项和为,则的值为()A.B.C.D.3、已知的三个顶点是,,,则边上的高所在的直线方程为()A.B.C.D.4、方程表示的曲线是()A.一个椭圆和一条直线B.一个椭圆和一条射线C.一条射线D.一个椭圆5、已知是双曲线的左焦点,圆与双曲线在第一象限的交点为,若的中点在双曲线的渐近线上,则此双曲线的离心率是()A.B.2C.D.6、在正四面体中,棱长为2,且E是棱AB中点,则的值为A.B.1C.D.7、椭圆:与双曲线:的离心率之积为2,则双曲线的渐近线方程为()A.B.C.D.8、已知,向量,,若,则x的值为()A.-1B.1C.-2D.29、已知正项等比数列的前项和为,且,则的最小值为()A.B.C.D.10、设抛物线的焦点为,准线与轴的交点为,是上一点,若,则()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知函数,是的导函数,则______12、若,且,则的最小值是____________.13、已知函数,则曲线在点处的切线方程为___________14、双曲线的左顶点为,虚轴的一个端点为,右焦点到直线的距离为,则双曲线的离心率为__________.15、甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现同时从甲、乙两口袋中各任取一个球交换放入对方口袋,共进行了2次这样的操作后,甲口袋中恰有2个黑球的概率为__________________.16、已知,分别是双曲线的左、右焦点,P是其一条渐近线上的一点,且以为直径的圆经过点P,则的面积为___________.三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆,离心率为,椭圆上任一点满足(1)求椭圆的方程;(2)若动直线与椭圆相交于、两点,若坐标原点总在以为直径的圆外时,求的取值范围.18、总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到2025年中国的汽车总销量将达到3500万辆,并希望新能源汽车至少占总销量的五分之一.江苏某新能源公司年初购入一批新能源汽车充电桩,每台16200元,第一年每台设备的维修保养费用为1100元,以后每年增加400元,每台充电桩每年可给公司收益8100元(1)每台充电桩第几年开始获利?(2)每台充电桩在第几年时,年平均利润最大19、求适合下列条件的圆锥曲线的标准方程(1)中心在原点,实轴在轴上,一个焦点在直线上的等轴双曲线;(2)椭圆的中心在原点,焦点在轴上,离心率等于,且它的一个顶点恰好是抛物线的焦点;(3)经过点抛物线20、如图,在直三棱柱中,,,.M为侧棱的中点,连接,,CM.(1)证明:AC平面;(2)证明:平面;(3)求二面角的大小.21、已知数列{an}为等差数列,且a1+a5=-12,a4+a8=0.(1)求数列{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的通项公式参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】由可求出直线过定点,作出图象,求出和,数形结合可得或,即可求解.【详解】由可得:,由可得,所以直线:过定点,由可得,作出图象如图所示:,,若直线与线段相交,则或,解得或,所以实数的取值范围是或,故选:A.2、答案:A【解析】函数的图象在点处的切线与直线平行,利用导函数的几何含义可以求出,转化求解数列的通项公式,进而由数列的通项公式,利用裂项相消法求和即可【详解】解:∵函数的图象在点处的切线与直线平行,由求导得:,由导函数得几何含义得:,可得,∴,所以,∴数列的通项为,所以数列的前项的和即为,则利用裂项相消法可以得到:所以数列的前2021项的和为:.故选:A.3、答案:B【解析】求出边上的高所在的直线的斜率,再利用点斜式方程可得答案.【详解】因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.故选:B.4、答案:A【解析】根据题意得到或,即可求解.【详解】由方程,可得或,即或,所以方程表示的曲线为一个椭圆或一条直线.故选:A.5、答案:A【解析】根据双曲线的几何性质和平面几何性质,建立关于a,b,c的方程,从而可求得双曲线的离心率得选项.【详解】由题意可设右焦点为,因为,且圆:,所以点在以焦距为直径的圆上,则,设的中点为点,则为的中位线,所以,则,又点在渐近线上,所以,且,则,,所以,所以,则在中,可得,,即,解得,所以,故选:A【点睛】方法点睛: