预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届内蒙古赤峰市翁牛特旗乌丹第二中学高二数学期末联考模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知矩形,,,沿对角线将折起,若二面角的余弦值为,则与之间距离为()A.B.C.D.2、已知,则的最小值是()A.3B.8C.12D.203、如图,已知四棱锥,底面ABCD是边长为4的菱形,且,E为AD的中点,,则异面直线PC与BE所成角的余弦值为()A.B.C.D.4、已知动点的坐标满足方程,则的轨迹方程是()A.B.C.D.5、已知双曲线C:(,)的一条渐近线被圆所截得的弦长为2,的C的离心率为()A.B.C.2D.6、已知椭圆与双曲线有相同的焦点,且它们的离心率之积为1,则椭圆的标准方程为()A.B.C.D.7、已知函数是区间上的可导函数,且导函数为,则“对任意的,”是“在上为增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8、已知命题p:,,则命题p的否定为()A.,B.,C.,D.,9、直线关于直线对称的直线方程为()A.B.C.D.10、已知动圆过定点,并且与定圆外切,则动圆的圆心的轨迹是()A.抛物线B.椭圆C.双曲线D.双曲线的一支二、填空题(本题共6小题,每题5分,共30分)11、已知函数是上的奇函数,,对,成立,则的解集为_________12、点到直线的距离为______.13、在正方体中,二面角的大小为__________(用反三角表示)14、已知函数(1)求函数的最小正周期和单调递增区间;(2)在锐角三角形中,角,,所对的边分别为,,,若,,,求的面积15、如图,长方体中,,,,,分别是,,的中点,则异面直线与所成角为__.16、已知直线与垂直,则m的值为______三、解答题(本题共5小题,每题12分,共60分)17、在平面直角坐标系中,已知椭圆的焦点为,且过点,椭圆的上、下顶点分别为,右顶点为,直线过点且垂直于轴(1)求椭圆的标准方程;(2)若点在椭圆上(且在第一象限),直线与交于点,直线与轴交于点,试问:是否为定值?若是,请求出定值;若不是,请说明理由18、平面直角坐标系中,过椭圆:右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求椭圆M的方程;(2)C,D为椭圆M上的两点,若四边形ACBD的对角线CD与AB垂直,求四边形ACBD面积的最大值.19、如图,在四棱锥中,底面ABCD为直角梯形,,,平面底面ABCD,Q为AD的中点,M是棱PC的中点,,,(1)求证:;(2)求直线PB与平面MQB所成角的正弦值20、如图,在梯形中,,,平面,四边形为矩形,点为线段的中点,且(1)求证:平面平面;(2)若平面与平面所成锐二面角的余弦值为,则三棱锥F-ABC的体积为多少?21、已知椭圆,点在上,,且(1)求出直线所过定点的坐标;(不需要证明)(2)过A点作的垂线,垂足为,是否存在点,使得为定值?若存在,求出的值;若不存在,说明理由.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,分析可知二面角的平面角为,利用余弦定理求出,证明出,再利用勾股定理可求得的长.【详解】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,因为,,,则,因为,由等面积法可得,同理可得,由勾股定理可得,同理可得,,因为四边形为平行四边形,且,故四边形为矩形,所以,,因为,所以,二面角的平面角为,在中,,,由余弦定理可得,,,,则,,因为,平面,平面,则,,由勾股定理可得.故选:C.2、答案:A【解析】利用基本不等式进行求解即可.【详解】因为,所以,当且仅当时取等号,即当时取等号,故选:A3、答案:B【解析】根据异面直线的定义找出角即为所求,再利用余弦定理解三角形即可得出.【详解】分别取BC,PB的中点F,G,连接DF,FG,DG,如图,因为E为AD的中点,四边形ABCD是菱形,所以,所以(其补角)是异面直线PC与BE所成的角因为底面ABCD是边长为4菱形,且,,由余弦定理可知,所以,所以,所以异面直线PC与BE所成角的余弦值为,故选:B4、答案:C【解析】此方程表示点到点的距离与到点的距离之差为8,而这正好符合双曲线的定义,点的轨迹是双曲线的右支,,的轨迹方程是,故选C.5、答案:C【解析】由双曲线的方程可得渐近线的直线方程,根据直线和圆相交弦长可得圆心到直线的距离,进而可得,结合,可得离心率.【详解】双曲线的一条渐近线方程为,即,被圆所截得的弦长为2,所以圆心到直线的距离为,,解得,故选:C【点睛】本题考查了双曲线的渐近线和离心率、直线和圆的相交弦、点到直线距离等基本知识,考查了运算求解能力和逻辑推理能力,转化的数学思想,属于一般题目.6、答案:A【解析