预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届内蒙古赤峰市赤峰二中高二数学第一学期期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、函数,的最小值为()A.2B.3C.D.2、如图是等轴双曲线形拱桥,现拱顶距离水面6米,水面宽米,若水面下降6米,则水面宽()A.米B.米C.米D.米3、函数的图象如图所示,则函数的图象可能是A.B.C.D.4、已知双曲线的离心率为2,且与椭圆有相同的焦点,则该双曲线的渐近线方程为()A.B.C.D.5、椭圆的焦点坐标是()A.(±4,0)B.(0,±4)C.(±5,0)D.(0,±5)6、已知f(x)是定义在R上的函数,且f(2)=2,,则f(x)>x的解集是()A.B.C.D.7、已知点的坐标为(5,2),F为抛物线的焦点,若点在抛物线上移动,当取得最小值时,则点的坐标是A.(1,)B.C.D.8、已知则是的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9、已知一组数据为:2,4,6,8,这4个数的方差为()A.4B.5C.6D.710、已知抛物线上一点M与焦点间的距离是3,则点M的纵坐标为()A.1B.2C.3D.4二、填空题(本题共6小题,每题5分,共30分)11、从编号为01,02,…,60的60个产品中用系统抽样的方法抽取一个样本,已知样本中的前两个编号分别为02,08(编号按从小到大的顺序排列),则样本中最大的编号是_________12、已知抛物线方程为,则其焦点坐标为__________13、已知函数,若过点存在三条直线与曲线相切,则的取值范围为___________14、如图所示,二面角为,是棱上的两点,分别在半平面内,且,,,,,则的长______15、如图,椭圆的中心在坐标原点,是椭圆的左焦点,分别是椭圆的右顶点和上顶点,当时,此类椭圆称为“黄金椭圆”,则“黄金椭圆”的离心率___________.16、如图,在边长为2的正方形ABCD中,点E,F分别是AB,BC的中A点,将,,,分别沿DE,EF,DF折起,使得A,B,C三点重合于点P,则四面体的外接球表面积为____________.三、解答题(本题共5小题,每题12分,共60分)17、在平面直角坐标系中,点到两点的距离之和等于4,设点的轨迹为曲线(1)求曲线的方程;(2)设直线与交于两点,为何值时?18、抚州市为了了解学生的体能情况,从全市所有高一学生中按80:1的比例随机抽取200人进行一分钟跳绳次数测试,将所得数据整理后,分为组画出频率分布直方图如图所示,现一,二两组数据丢失,但知道第二组的频率是第一组的3倍(1)若次数在以上含次为优秀,试估计全市高一学生的优秀率是多少?全市优秀学生的人数约为多少?(2)求第一组、第二小组的频率是多少?并补齐频率分布直方图;(3)估计该全市高一学生跳绳次数的中位数和平均数?19、如图,在三棱锥A-BCD中,O为线段BD中点,是边长为1正三角形,且OA⊥BC,AB=AD(1)证明:平面ABD⊥平面BCD;(2)若|OA|=1,,求平面BCE与平面BCD的夹角的余弦值20、已知椭圆C:的上顶点与椭圆的左右顶点连线的斜率之积为-.(1)求椭圆C的离心率(2)点M(,)在椭圆C上,椭圆的左顶点为D,上顶点为B,点A的坐标为(1,0),过点D的直线L与椭圆在第一象限交于点P,与直线AB交于点Q设L的斜率为k,若,求k的值.21、设正项数列的前项和为,已知,(1)求数列的通项公式;(2)数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】求导函数,分析单调性即可求解最小值【详解】由,得,当时,,单调递减;当时,,单调递增∴当时,取得最小值,且最小值为故选:B.2、答案:B【解析】以双曲线的对称中心为原点,焦点所在对称轴为y轴建立直角坐标系,求出双曲线方程,数形结合即可求解.【详解】如图所示,以双曲线的对称中心为原点,焦点所在对称轴为y轴建立直角坐标系,设双曲线标准方程为:(a>0),则顶点,,将A点代入双曲线方程得,,当水面下降6米后,,代入双曲线方程得,,∴水面宽:米.故选:B.3、答案:D【解析】原函数先减再增,再减再增,且位于增区间内,因此选D【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原函数的单调区间4、答案:B【解析】求出焦点,则可得出,即可求出渐近线方程.【详解】由椭圆可得焦点为,则设双曲线方程为,可得,则离心率,解得,则,所以渐近线方程为.故选:B.5、答案:A【解析】根据椭圆的方程求得的值,进而求得椭圆的焦点坐标,得到答案.【详解】由