预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年辽宁省凌源市第三高级中学高二数学期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、连掷一枚均匀的骰子两次,所得向上的点数分别为m,n,记,则下列说法正确的是()A.事件“”的概率为B.事件“t是奇数”与“”互为对立事件C.事件“”与“”互为互斥事件D.事件“且”的概率为2、曲线的一个焦点F到两条渐近线的垂线段分别为FA,FB,O为坐标原点,若四边形OAFB是菱形,则双曲线C的离心率等于()A.B.C.2D.3、已知矩形,,,沿对角线将折起,若二面角的余弦值为,则与之间距离为()A.B.C.D.4、已知圆与圆没有公共点,则实数a的取值范围为()A.B.C.D.5、如图,在三棱锥中,是线段的中点,则()A.B.C.D.6、在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于()A.40B.42C.43D.457、已知函数,则()A.0B.1C.2D.8、设是定义在R上的可导函数,若(为常数),则()A.B.C.D.9、设F是双曲线的左焦点,,P是双曲线右支上的动点,则的最小值为()A.5B.C.D.910、设,则“”是“直线与直线”平行的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件二、填空题(本题共6小题,每题5分,共30分)11、设椭圆的左,右焦点分别为,,过的直线l与C交于A,B两点(点A在x轴上方),且满足,则直线l的斜率为______.12、已知数列满足下列条件:①数列是等比数列;②数列是单调递增数列;③数列的公比满足.请写出一个符合条件的数列的通项公式__________.13、若,,都为正实数,,且,,成等比数列,则的最小值为______14、已知点P是椭圆上的一点,点,则的最小值为____________.15、在的展开式中项的系数为______.(结果用数值表示)16、已知圆关于直线对称,则________三、解答题(本题共5小题,每题12分,共60分)17、在数列中,,,(1)设,证明:数列是等差数列;(2)求数列的前项和.18、已知数列的前n项和为,当时,;数列中,.直线经过点(1)求数列的通项公式和;(2)设,求数列的前n项和,并求的最大整数n19、已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点的直线与椭圆相交于、两点.(1)求椭圆的方程;(2)若以为直径的圆过坐标原点,求的值.20、已知直线与双曲线相交于、两点.(1)当时,求;(2)是否存在实数,使以为直径的圆经过坐标原点?若存在,求出的值;若不存在,说明理由.21、从①,②,③,这三个条件中任选一个,补充在下面问题中并作答:已知等差数列公差大于零,且前n项和为,,______,,求数列的前n项和.(注:如果选择多个条件分别解答,那么按照第一个解答计分)参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】计算出事件“t=12”的概率可判断A;根据对立事件的概念,可判断B;根据互斥事件的概念,可判断C;计算出事件“t>8且mn<32”的概率可判断D;【详解】连掷一枚均匀的骰子两次,所得向上的点数分别为m,n,则共有个基本事件,记t=m+n,则事件“t=12”必须两次都掷出6点,则事件“t=12”的概率为,故A错误;事件“t是奇数”与“m=n”为互斥不对立事件,如事件m=3,n=5,故B错误;事件“t=2”与“t≠3”不是互斥事件,故C错误;事件“t>8且mn<32”有共9个基本事件,故事件“t>8且mn<32”的概率为,故D正确;故选:D2、答案:A【解析】依题意可得为正方形,即可得到,从而得到双曲线的渐近线为,即可求出双曲线的离心率;【详解】解:依题意,,且四边形为菱形,所以为正方形,所以,即双曲线的渐近线为,即,所以;故选:A3、答案:C【解析】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,分析可知二面角的平面角为,利用余弦定理求出,证明出,再利用勾股定理可求得的长.【详解】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,因为,,,则,因为,由等面积法可得,同理可得,由勾股定理可得,同理可得,,因为四边形为平行四边形,且,故四边形为矩形,所以,,因为,所以,二面角的平面角为,在中,,,由余弦定理可得,,,,则,,因为,平面,平面,则,,由勾股定理可得.故选:C.4、答案:B【解析】求出圆、的圆心和半径,再由两圆没有公共点列不等式求解作答.【详解】圆的圆心,半径,圆的圆心,半径,,因圆、没有公共点,则有或,即或,又,解得或,所以实数a的取值范围为.故选:B5、答案:A【解析】根据给定几何体利用空间向量基底结合向量运算计算作答.【详解】在三棱锥中,是线段的中点,所以:.故选:A6、答案:B【解析】