预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年辽宁省凌源市实验中学高二数学第二学期期末学业质量监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、数列中,满足,,设,则()A.B.C.D.2、抛物线的准线方程是()A.B.C.D.3、过抛物线的焦点F的直线l与抛物线交于PQ两点,若以线段PQ为直径的圆与直线相切,则()A.8B.7C.6D.54、如图,正四棱柱是由四个棱长为1的小正方体组成的,是它的一条侧棱,是它的上底面上其余的八个点,则集合的元素个数()A.1B.2C.4D.85、直线且的倾斜角为()A.B.C.D.6、在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A.B.C.D.67、已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.98、四棱锥中,底面ABCD是平行四边形,点E为棱PC的中点,若,则等于()A.1B.C.D.29、已知等比数列的前项和为,若,,则()A.20B.30C.40D.5010、已知数列的前n项和为,,,则()A.B.C.1025D.2049二、填空题(本题共6小题,每题5分,共30分)11、已知椭圆的右顶点为P,右焦点F与抛物线的焦点重合,的顶点与的中心O重合.若与相交于点A,B,且四边形为菱形,则的离心率为___________.12、如图,在棱长为2的正方体中,E为BC的中点,点P在线段上,分别记四棱锥,的体积为,,则的最小值为______13、已知、分别为双曲线的左、右焦点,为双曲线右支上一点,满足,直线与圆有公共点,则双曲线的离心率的取值范围是___________.14、已知平面向量均为非零向量,且满足,记向量在向量上投影向量为,则k=______.(用数字作答)15、在△ABC中,,AB=3,,则________16、双曲线的渐近线方程是____________三、解答题(本题共5小题,每题12分,共60分)17、已知公差不为零的等差数列的前项和为,,,成等比数列且满足________.请在①;②;③,这三个条件中任选一个补充在上面题干中,并回答以下问题.(1)求数列的通项公式;(2)设,求数列的前项和.18、已知函数(1)若,求函数的单调区间;(2)若函数有两个不相等的零点,证明:19、在直角坐标系中,点到两点、的距离之和等于,设点的轨迹为,直线与交于、两点(1)求曲线的方程;(2)若,求的值20、已知圆与(1)过点作直线与圆相切,求的方程;(2)若圆与圆相交于、两点,求的长21、已知椭圆的焦点为,且长轴长是焦距的倍(1)求椭圆的标准方程;(2)若斜率为1的直线与椭圆相交于两点,已知点,求面积的最大值参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】由递推公式可归纳得,由此可以求出的值【详解】因为,,所以,,,因此故选C【点睛】本题主要考查利用数列的递推式求值和归纳推理思想的应用,意在考查学生合情推理的意识和数学建模能力2、答案:D【解析】将抛物线的方程化为标准方程,可得出该抛物线的准线方程.【详解】抛物线的标准方程为,则,可得,因此,该抛物线的准线方程为.故选:D.3、答案:C【解析】依据抛物线定义可以证明:以过抛物线焦点F的弦PQ为直径的圆与其准线相切,则可以顺利求得线段的长.【详解】抛物线的焦点F,准线取PQ中点H,分别过P、Q、H作抛物线准线的垂线,垂足分别为N、M、E则四边形为直角梯形,为梯形中位线,由抛物线定义可知,,,则故,即点H到抛物线准线的距离为的一半,则以线段PQ为直径的圆与抛物线的准线相切.又以线段PQ为直径的圆与直线相切,则以线段PQ为直径的圆的直径等于直线与直线间的距离.即故选:C4、答案:A【解析】用空间直角坐标系看正四棱柱,根据向量数量积进行计算即可.【详解】建立空间直角坐标系,为原点,正四棱柱的三个边的方向分别为轴、轴和看轴,如右图示,,设,则QUOTE所以集合,元素个数为1.故选:A.5、答案:C【解析】由直线方程可知其斜率,根据斜率和倾斜角关系可得结果.【详解】直线方程可化为:,直线的斜率,直线的倾斜角为.故选:C.6、答案:C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.7、答案:C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.8、答案:B【解析】运用向量的线性运用表示向量,对照系数,求得,代入可得选项.【详解】因为,所以,所以,所以,解得,所以,故选:B.9、答案:B【解析】根据等比数列前项和的性质进行求解即可.【详解】因为