预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年辽宁省凌源市实验中学高二数学第一学期期末学业质量监测试题含解析一、单选题(本题共10小题,每题5分,共50分)1、在四面体中,点G是的重心,设,,,则()A.B.C.D.2、直线的倾斜角为A.B.C.D.3、在正方体中,与直线和都垂直,则直线与的关系是()A.异面B.平行C.垂直不相交D.垂直且相交4、如图,在四面体中,,,两两垂直,已知,,则直线与平面所成角的正弦值为()A.B.C.D.5、以轴为对称轴,顶点为坐标原点,焦点到准线的距离为4的抛物线方程是()A.B.C.或D.或6、直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()AB.C.D.7、等比数列中,,则()A.B.C.2D.48、在正方体中,AC与BD的交点为M.设则下列向量与相等的向量是()A.B.C.D.9、抛物线的焦点到直线的距离()A.B.C.1D.210、直线l:的倾斜角为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知双曲线与椭圆有公共的左、右焦点分别为,,以线段为直径的圆与双曲线C及其渐近线在第一象限内分别交于M,N两点,且线段的中点在另一条渐近线上,则的面积为___________.12、设为等差数列的前n项和,若,,则______13、设等差数列的前项和为,且,,则__________.14、已知直线与抛物线相交于A,B两点,且,则抛物线C的准线方程为___________.15、某学生到某工厂进行劳动实践,利用打印技术制作模型.如图,该模型为一个大圆柱中挖去一个小圆柱后剩余部分(两个圆柱底面圆的圆心重合),大圆柱的轴截面是边长为的正方形,小圆柱的侧面积是大圆柱侧面积的一半,打印所用原料的密度为,不考虑打印损耗,制作该模型所需原料的质量为________g.(取)16、函数,其导函数为函数,则__________三、解答题(本题共5小题,每题12分,共60分)17、如图,在正方体中,分别为,的中点(1)求证:平面平面;(2)求平面与平面所成锐二面角的余弦值18、已知三个条件①圆心在直线上;②圆的半径为2;③圆过点在这三个条件中任选一个,补充在下面的问题中,并作答(注:如果选择多个条件分别解答,按第一个解答计分)(1)已知圆过点且圆心在轴上,且满足条件________,求圆的方程;(2)在(1)的条件下,直线与圆交于、两点,求弦长的最小值及相应的值19、如图所示,在直三棱柱中,是等腰直角三角形,(1)证明:;(2)若点E是棱的中点,求平面与平面所成锐二面角的余弦值20、已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m,交椭圆于A,B两个不同点.(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)求证直线MA,MB与x轴始终围成一个等腰三角形.21、已知椭圆的焦距为,左、右焦点分别为,为椭圆上一点,且轴,,为垂足,为坐标原点,且(1)求椭圆的标准方程;(2)过椭圆的右焦点的直线(斜率不为)与椭圆交于两点,为轴正半轴上一点,且,求点的坐标参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】结合重心的知识以及空间向量运算求得正确答案.【详解】设是中点,.故选:B2、答案:B【解析】分析出直线与轴垂直,据此可得出该直线的倾斜角.【详解】由题意可知,直线与轴垂直,该直线的倾斜角为.故选:B.【点睛】本题考查直线的倾斜角,关键是掌握直线倾斜角的定义,属于基础题3、答案:B【解析】以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,根据向量垂直的坐标表示求出,再利用向量的坐标运算可得,根据共线定理即可判断.【详解】设正方体的棱长为1.以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,则.设,则,取.,.故选:B【点睛】本题考查了空间向量垂直的坐标表示、空间向量的坐标表示、空间向量共线定理,属于基础题.4、答案:D【解析】利用三线垂直建立空间直角坐标系,将线面角转化为直线的方向向量和平面的法向量所成的角,再利用空间向量进行求解.【详解】以,,所在直线为轴,轴,轴建立空间直角坐标系(如图所示),则,,,,,设平面的一个法向量为,则,即,令,则,,所以平面的一个法向量为;设直线与平面所成角为,则,即直线与平面所成角的正弦值为.故选:D.5、答案:C【解析】根据抛物线的概念以及几何性质即可求抛物线的标准方程.【详解】依题意设抛物线方程为因为焦点到准线的距离为4,所以,所以,所以抛物线方程或故选:C6、答案:D【解析】根据题意作出示意图,根据圆的性质以及直线的倾斜角求解出的长度,再根据椭圆的定义求解出的关系,则椭圆离心率可求.【详解】设椭圆的左右焦点分别为,如下图:因为以线段为直径的圆恰好经过椭圆的左焦点,所