预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年辽宁省凌源市实验中学高二数学期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知函数在上单调递减,则实数的取值范围是()A.B.C.D.2、已知集合,,则A.B.C.D.3、已知数列中,,当时,,设,则数列的通项公式为()A.B.C.D.4、在空间直角坐标系中,,,若∥,则x的值为()A.3B.6C.5D.45、过椭圆的左焦点作弦,则最短弦的长为()A.B.2C.D.46、已知等差数列的前项和为,且,,则()A.3B.5C.6D.107、已知向量分别是直线的方向向量,若,则()A.B.C.D.8、已知中,角,,的对边分别为,,,且,,成等比数列,则这个三角形的形状是()A.直角三角形B.等边三角形C.等腰直角三角形D.钝角三角形9、在中,角、、的对边分别是、、,若.则的大小为()A.B.C.D.10、彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30mB.C.D.二、填空题(本题共6小题,每题5分,共30分)11、高二某位同学参加物理、政治科目的学考,已知这位同学在物理、政治科目考试中得A的概率分别为、,这两门科目考试成绩的结果互不影响,则这位考生至少得1个A的概率为______12、已知椭圆的左、右焦点分别为,,为椭圆上一点,垂直于轴,且为等腰三角形,则椭圆的离心率为__________13、i为虚数单位,复数______14、如图的一系列正方形图案称为谢尔宾斯基地毯,图案的做法是:把一个正方形分成9个全等的小正方形,对中间的一个小正方形进行着色得到第1个图案(图1);在第1个图案中对没有着色的小正方形再重复以上做法得到第2个图案(图2);以此类推,每进行一次操作,就得到一个新的正方形图案,设原正方形的边长为1,记第n个图案中所有着色的正方形的面积之和为,则数列的通项公式______15、已知圆:,:.则这两圆的连心线方程为_________(答案写成一般式方程)16、已知O为坐标原点,,是抛物线上的两点,且满足,则______;若OM垂直AB于点M,且为定值,则点Q的坐标为__________.三、解答题(本题共5小题,每题12分,共60分)17、在平面直角坐标系中,已知,动点M满足(1)求M的轨迹方程;(2)设,点N是的中点,求点N的轨迹方程;(3)设M的轨迹与N的轨迹的交点为P、Q,求18、已知椭圆()的左、右焦点为,,,离心率为(1)求椭圆的标准方程(2)的左顶点为,过右焦点的直线交椭圆于,两点,记直线,,的斜率分别为,,,求证:19、函数(1)求在上的单调区间;(2)当时,不等式恒成立,求实数a的取值范围20、如图,在三棱锥中,,平面,,分别为棱,的中点.(1)求证:;(2)若,,二面角的大小为,求三棱锥的体积.21、设P是抛物线上一个动点,F为抛物线的焦点.(1)若点P到直线距离为,求的最小值;(2)若,求的最小值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】由题意,在上恒成立,只需满足即可求解.【详解】解:因为,所以,因为函数在上单调递减,所以在上恒成立,只需满足,即,解得故选:A.2、答案:B【解析】由交集定义直接求解即可.【详解】集合,,则.故选B.【点睛】本题主要考查了集合的交集运算,属于基础题.3、答案:A【解析】根据递推关系式得到,进而利用累加法可求得结果【详解】数列中,,当时,,,,,且,,故选:A4、答案:D【解析】依题意可得,即可得到方程组,解得即可;【详解】解:依题意,即,所以,解得故选:D5、答案:A【解析】求出椭圆的通径,即可得到结果【详解】过椭圆的左焦点作弦,则最短弦的长为椭圆的通径:故选:A6、答案:B【解析】根据等差数列的性质,以及等差数列的前项和公式,由题中条件,即可得出结果.【详解】因为数列为等差数列,由,可得,,则.故选:B.【点睛】本题主要考查等差数列的性质,以及等差数列前项和的基本量运算,属于基础题型.7、答案:C【解析】由题意,得,由此可求出答案【详解】解:∵,且分别是直线的方向向量,∴,∴,∴,故选:C【点睛】本题主要考查向量共线的坐标表示,属于基础题8、答案:B【解析】根据题意求出,结合余弦定理分情况讨论即可.【详解】解:因为,所以.由题意得,利用余弦定理得:.当,即时,,即,解得:.此时三角形为等边三角形;当,即时,,不成立.所以三角形的形状是等边三角形.故选:B.【点睛】本题主要考查利用余弦定理判断三角形的形状,属于基础题.9、答案:B【解析】利用余弦定理结合角的范围可求得角的值,再利用三角形的内角和定理可求得的值.【详解】因为,则,则,由余弦定