预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年浙江省十校联盟选考学考高二数学第二学期期末质量跟踪监视试题含解析一、单选题(本题共10小题,每题5分,共50分)1、数列1,6,15,28,45,...中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为()A.153B.190C.231D.2762、已知是空间的一个基底,,,,若四点共面.则实数的值为()A.B.C.D.3、已知是抛物线上的一个动点,是圆上的一个动点,是一个定点,则的最小值为A.B.C.D.4、在正方体中,为棱的中点,则异面直线与所成角的正切值为A.B.C.D.5、已知离散型随机变量X的分布列如下:X123P则数学期望()A.B.C.1D.26、设命题甲:,命题乙:直线与直线平行,则()A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充要条件D.甲是乙的既不充分也不必要条件7、已知椭圆的短轴长和焦距相等,则a的值为()A.1B.C.D.8、年底以来,我国多次在重要场合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正负抵消,实现二氧化碳“零排放”.二氧化碳的分子是由一个碳原子和两个氧原子构成的,其结构式为.已知氧有、、三种天然同位素,碳有、、三种天然同位素,则由上述同位素可构成的不同二氧化碳分子共有()A.种B.种C.种D.种9、已知命题p:,,则命题p的否定为()A,B.,C.,D.,10、定义在区间上的函数满足:对恒成立,其中为的导函数,则A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、总体由编号为01,02,…,30的30个个体组成.选取方法是从下面随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为____________.66065747173407275017362523611665118918331119921970058102057864532345647612、若圆C:与圆D2的公共弦长为,则圆D的半径为___________.13、已知函数在R上连续且可导,为偶函数且,其导函数满足,则不等式的解集为___.14、若平面法向量,直线的方向向量为,则与所成角的大小为___________.15、在等比数列中,若,,则_____16、在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.三、解答题(本题共5小题,每题12分,共60分)17、在平面直角坐标系xOy中,已知椭圆的左、右焦点分别是,,离心率,请再从下面两个条件中选择一个作为已知条件,完成下面的问题:①椭圆C过点;②以点为圆心,3为半径的圆与以点为圆心,1为半径的圆相交,且交点在椭圆C上(只能从①②中选择一个作为已知)(1)求椭圆C的方程;(2)已知过点的直线l交椭圆C于M,N两点,点N关于x轴的对称点为,且,M,三点构成一个三角形,求证:直线过定点,并求面积的最大值.18、在四棱锥中,平面,底面是边长为2的菱形,分别为的中点.(1)证明:平面;(2)求三棱锥的体积.19、某地从今年8月份开始启动12-14岁人群新冠肺炎疫苗的接种工作,共有8千人需要接种疫苗.前4周的累计接种人数统计如下表:前x周1234累计接种人数y(千人)2.5344.5(1)求y关于的线性回归方程;(2)根据(1)中所求的回归方程,预计该地第几周才能完成疫苗接种工作?参考公式:回归方程中斜率和截距的最小二乘估计公式分别为,20、已知三棱柱中,.(1)求证:平面平面.(2)若,在线段上是否存在一点使平面和平面所成角的余弦值为若存在,确定点的位置;若不存在,说明理由.21、如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△BDC′的位置,如图2所示,并使得平面BDC′⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=.图1图2(1)求平面FBC′与平面FBA夹角的余弦值;(2)在线段AD上是否存在一点M,使得⊥平面?若存在,求的值;若不存在,说明理由.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】细心观察,寻求相邻项及项与序号之间的关系,同时联系相关知识,如等差数列、等比数列等,结合图形可知,,,,,,,据此即可求解.【详解】由题意知,数列的各项为1,6,15,28,45,...所以,,,,,,所以.故选:B【点睛】本题考查合情推理中的归纳推理;考查逻辑推理能力;观察分析、寻求规律是求解本题的关键;属于中档题、探索型试题.2、答案:A【解析】由共面定理列式得,再根据对应系数相等计算.【详解】因为四点共面,设存在有序数对使得,则,即,所以得.故选:A3、答案:A【解析】恰好为抛物线的焦点,等于到准线的距离,要想最小,过圆心作抛物线的准线