预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年浙江省十校联盟选考学考高二数学第二学期期末检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、在空间直角坐标系下,点关于轴对称的点的坐标为()A.B.C.D.2、已知向量,,则等于()A.B.C.D.3、过坐标原点作直线的垂线,垂足为,则的取值范围是()A.B.C.D.4、青少年视力被社会普遍关注,为了解他们的视力状况,经统计得到图中右下角名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数.如果执行如图所示的算法程序,那么输出的结果是()A.B.C.D.5、已知直线,,若,则实数的值是()A.0B.2或-1C.0或-3D.-36、已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上B.在轴上C.当时在轴上D.当时在轴上7、设,则的一个必要不充分条件为()A.B.C.D.8、已知抛物线:,焦点为,若过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则长为A.3B.4C.7D.109、函数有两个不同的零点,则实数的取值范围是()A.B.C.D.10、设集合,集合,当有且仅有一个元素时,则r的取值范围为()A.或B.或C.或D.或二、填空题(本题共6小题,每题5分,共30分)11、已知数列中,,,则_______.12、滕王阁,江南三大名楼之一,因初唐诗人王勃所作《滕王阁序》中“落霞与孤鹜齐飞,秋水共长天一色”而名传千古,流芳后世.如图,在滕王阁旁地面上共线的三点,,处测得阁顶端点的仰角分别为,,.且米,则滕王阁高度___________米.13、直线与直线间的距离为___________.14、曲线在点处的切线方程为__________15、双曲线上一点P到的距离最小值为___________.16、已知平面的法向量为,平面的法向量为,若,则___________.三、解答题(本题共5小题,每题12分,共60分)17、如图,正四棱锥底面的四个顶点在球的同一个大圆上,点在球面上,且正四棱锥的体积为.(1)该正四棱锥的表面积的大小;(2)二面角的大小.(结果用反三角表示)18、如图,在四棱锥中,侧面底面,是以为斜边的等腰直角三角形,,,,点E为的中点.(1)证明:平面;(2)求二面角的余弦值.19、设曲线在点(1,0)处的切线方程为.(1)求a,b的值;(2)求证:;(3)当,求a的取值范围.20、如图,在三棱锥中,,平面,,分别为棱,的中点.(1)求证:;(2)若,,二面角的大小为,求三棱锥的体积.21、求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点;(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】由空间中关于坐标轴对称点坐标的特征可直接得到结果.【详解】关于轴对称的点的坐标不变,坐标变为相反数,关于轴对称的点为.故选:C.2、答案:C【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】由,,得,因此.故选:C.3、答案:D【解析】求出直线直线过的定点A,由题意可知垂足是落在以OA为直径的圆上,由此可利用的几何意义求得答案,【详解】直线,即,令,解得,即直线过定点,由过坐标原点作直线的垂线,垂足为,可知:落在以OA为直径的圆上,而以OA为直径的圆为,如图示:故可看作是圆上的点到原点距离的平方,而圆过原点,圆上点到原点的最远距离为,但将原点坐标代入直线中,不成立,即直线l不过原点,所以不可能和原点重合,故,故选:D4、答案:B【解析】依题意该程序框图是统计这12名青少年视力小于等于的人数,结合茎叶图判断可得;【详解】解:根据程序框图可知,该程序框图是统计这12名青少年视力小于等于的人数,由茎叶图可知视力小于等于的有5人,故选:B5、答案:C【解析】由,结合两直线一般式有列方程求解即可.【详解】由知:,解得:或故选:C.6、答案:B【解析】设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置【详解】渐近线方程为,,平方,两边除,,,双曲线的焦点在轴上.故选B.【点睛】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力7、答案:C【解析】利用必要条件和充分条件的定义判断.【详解】A选项:,,,所以是的充分不必要条件,A错误;B选项:,,所以是的非充分非必要条件,B错误;C选项:,,,所以是必要不充分条件,C正确;D选项:,,,所以是的非充分非必要条件,D错误.故选:C.8、答案:D【解析】利用抛物线的定义,把的长转化为点到准线的距离的和得解【详解】解:抛物线:,焦点为,过的直线交抛物线于、两点,