预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年浙江省十校联盟选考学考高二数学第二学期期末质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知空间向量,则()A.B.C.D.2、抛物线C:的焦点为F,P,R为C上位于F右侧的两点,若存在点Q使四边形PFRQ为正方形,则()A.B.C.D.3、某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A类学校中的学生甲被抽到的概率()A.B.C.D.4、已知函数,则()A.3B.C.D.5、若等轴双曲线C过点,则双曲线C的顶点到其渐近线的距离为()A.1B.C.D.26、在区间上随机取一个数,则事件“曲线表示圆”的概率为()A.B.C.D.7、如图所示,已知是椭圆的左、右焦点,为椭圆的上顶点,在轴上,,且是的中点,为坐标原点,若点到直线的距离为3,则椭圆的方程为()AB.C.D.8、两个圆和的位置是关系是()A.相离B.外切C.相交D.内含9、已知双曲线的左焦点为,,为双曲线的左、右顶点,渐近线上的一点满足,且,则双曲线的离心率为()A.B.C.D.10、下列关于命题的说法错误的是A.命题“若,则”的逆否命题为“若,则”B.“”是“函数在区间上为增函数”的充分不必要条件C.命题“,使得”的否定是“,均有”D.“若为的极值点,则”的逆命题为真命题二、填空题(本题共6小题,每题5分,共30分)11、已知球的半径为3,则该球的体积为_________.12、已知函数,则函数在区间上的平均变化率为___________.13、已知某农场某植物高度,且,如果这个农场有这种植物10000棵,试估计该农场这种植物高度在区间上的棵数为______.参考数据:若,则,,.14、若向量,,,且向量,,共面,则______15、若函数在区间上单调递减,则实数的取值范围是________;16、如图三角形数阵:132456109871112131415……按照自上而下,自左而右的顺序,位于第行的第列,则______.三、解答题(本题共5小题,每题12分,共60分)17、已知圆C的圆心在坐标原点,且过点M()(1)求圆C的方程;(2)已知点P是圆C上的动点,试求点P到直线的距离的最小值;18、已知椭圆的焦点与双曲线的焦点相同,且D的离心率为.(1)求C与D的方程;(2)若,直线与C交于A,B两点,且直线PA,PB的斜率都存在.①求m的取值范围.②试问这直线PA,PB的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.19、已知是各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)数列通项公式为,求数列的前n项和.20、已知抛物线的焦点为F,为抛物线C上的点,且.(1)求抛物线C的方程;(2)若直线与抛物线C相交于A,B两点,求弦长.21、已知数列的前项和是,且,等差数列中,(1)求数列的通项公式;(2)定义:记,求数列的前20项和参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】A利用向量模长的坐标表示判断;B根据向量平行的判定,是否存在实数使即可判断;C向量数量积的坐标表示求即可判断;D利用向量坐标的线性运算及数量积的坐标表示求即可.【详解】因为,所以A不正确:因为不存在实数使,所以B不正确;因为,故,所以C正确;因为,所以,所以D不正确故选:C2、答案:A【解析】不妨设,不妨设,则,利用抛物线的对称性及正方形的性质列出的方程求得后可得结论【详解】如图所示,设,不妨设,则,由抛物线的对称性及正方形的性质可得,解得(正数舍去),所以故选:A3、答案:D【解析】利用抽样的性质求解【详解】所有学生数为,所以所求概率为.故选:D4、答案:B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B5、答案:A【解析】先求出双曲线C的标准方程,再求顶点到其渐近线的距离.【详解】设等轴双曲线C的标准方程为,因为点在双曲线上,所以,解得,所以双曲线C的标准方程为,故上顶点到其一条渐近线的距离为.故选:A6、答案:D【解析】先求出曲线表示圆参数的范围,再由几何概率可得答案.【详解】由可得曲线表示圆,则解得或又所以曲线表示圆的概率为故选:D7、答案:D【解析】由题设可得,直线的方程为,点线距离公式表示到直线的距离,又联立解得即可得出答案.【详解】且,则△是等边三角形,设,则①,∴直线方程为,即,∴到直线的距离为②,又③,联立①②③,解得,,故椭圆方程为.故选:D.8、答案:C【解析】根据圆的方程得出两圆的圆心和半径,再得出圆心距离与两圆的半径的关系,可得选项.【详解】圆的圆心为,半径,的圆心为,半径,则,所以两圆的位置是关系是相交,故选:C.【点睛】本题考查两圆的位置关系,关键在于运用判定两圆