预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年广东省揭阳市高二数学第二学期期末达标检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知双曲线,其中一条渐近线与x轴的夹角为,则双曲线的渐近线方程是()A.B.C.D.2、已知三棱柱的所有棱长均为2,平面,则异面直线,所成角的余弦值为()A.B.C.D.3、圆与圆的位置关系为()A.外切B.内切C.相交D.相离4、命题:,的否定为()A.,B.不存在,C.,D.,5、如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A.B.C.D.6、已知,为双曲线:的焦点,为,(其中为双曲线半焦距),与双曲线的交点,且有,则该双曲线的离心率为()A.B.C.D.7、已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A.B.C.D.8、直线y=x+1与圆x2+y2=1的位置关系为A.相切B.相交但直线不过圆心C.直线过圆心D.相离9、正三棱锥的侧面都是直角三角形,,分别是,的中点,则与平面所成角的余弦值为()A.B.C.D.10、已知双曲线的左焦点为F,O为坐标原点,M,N两点分别在C的左、右两支上,若四边形OFMN为菱形,则C的离心率为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、某个弹簧振子在振动过程中的位移y(单位:mm)与时间t(单位:s)之间的关系为,则当s时,弹簧振子的瞬时速度为_________mm/s.12、若某几何体的三视图如图所示,则该几何体的体积是__________13、曲线在点M(π,0)处的切线方程为________14、设函数,则___________.15、若函数在区间上单调递减,则实数的取值范围是____________.16、对于实数表示不超过的最大整数,如.已知数列的通项公式,前项和为,则___________.三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆的左右焦点分别为,,点在椭圆上,与轴垂直,且(1)求椭圆的方程;(2)若点在椭圆上,且,求的面积18、已知椭圆的离心率是,且过点.直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的面积的最大值;(Ⅲ)设直线,分别与轴交于点,.判断,大小关系,并加以证明.19、已知A(-3,0),B(3,0),四边形AMBN的对角线交于点D(1,0),kMA与kMB的等比中项为,直线AM,NB相交于点P.(1)求点M的轨迹C的方程;(2)若点N也在C上,点P是否在定直线上?如果是,求出该直线,如果不是,请说明理由.20、如图,四棱锥的底面为正方形,底面,设平面与平面的交线为.(1)证明:;(2)已知,为直线上的点,求与平面所成角的正弦值的最大值.21、已知数列{}的首项=2,(n≥2,),,.(1)证明:{+1}为等比数列;(2)设数列{}的前n项和,求证:.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】由已知条件计算可得,即得到结果.【详解】由双曲线,可知渐近线方程为,又双曲线的一条渐近线与x轴的夹角为,故,即渐近线方程为.故选:C2、答案:A【解析】建立空间直角坐标系,利用向量法求解【详解】以为坐标原点,平面内过点且垂直于的直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系,如图所示,则,,,,∴,,∴,∴异面直线,所成角的余弦值为.故选:A3、答案:A【解析】根据两圆半径和、差、圆心距之间的大小关系进行判断即可.【详解】由,该圆的圆心为,半径为.圆圆心为,半径为,因为两圆的圆心距为,两圆的半径和为,所以两圆的半径和等于两圆的圆心距,因此两圆相外切,故选:A4、答案:D【解析】含有量词的命题的否定方法:先改变量词,然后再否定结论即可【详解】解:命题:,的否定为:,故选:D5、答案:B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.6、答案:B【解析】根据求得的关系,结合双曲线的定义以及勾股定理,即可求得的等量关系,再求离心率即可.【详解】根据题意,连接,作图如下:显然为直角三角形,又,又点在双曲线上,故可得,解得,由勾股定理可得:,即,即,,故双曲线的离心率为.故选:B.7、答案:D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等