预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年广东省揭阳市高二数学第二学期期末质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A.B.C.D.2、《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得,,,,递减的比例为,那么“衰分比”就等于,今共有粮石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得石,甲、丙所得之和为石,则“衰分比”为()A.B.C.D.3、已知函数,则()A.3B.C.D.4、已知空间向量,,,则()A.4B.-4C.0D.25、已知函数,若对任意,都有成立,则a的取值范围为()A.B.C.D.6、设实数,满足,则的最小值为()A.5B.6C.7D.87、已知椭圆的两个焦点分别为,若椭圆上不存在点,使得是钝角,则椭圆离心率的取值范围是()A.B.C.D.8、已知长方体中,,,则直线与所成角的余弦值是()A.B.C.D.9、在等比数列{an}中,a3,a15是方程x2+6x+2=0的根,则的值为()A.B.C.D.或10、函数的极大值点为()A.B.C.D.不存在二、填空题(本题共6小题,每题5分,共30分)11、已知双曲线:,斜率为的直线与E的左右两支分别交于A,B两点,点P的坐标为,直线AP交E于另一点C,直线BP交E于另一点D.若直线CD的斜率为,则E的离心率为___________12、将集合且中所有的元素从小到大排列得到的数列记为,则___________(填数值).13、某中学拟从4月16号至30号期间,选择连续两天举行春季运动会,从已往的气象记录中随机抽取一个年份,记录天气结果如下:日期161718192021222324252627282930天气晴阴雨阴阴晴阴晴雨雨阴晴晴晴雨估计运动会期间不下雨的概率为_____________.14、已知直线l:和圆C:,过直线l上一点P作圆C的一条切线,切点为A,则的最小值为______15、随机抽取某社区名居民,调查他们某一天吃早餐所花的费用(单位:元),所获数据的茎叶图如图所示,则这个数据的众数是_________16、若正实数满足则的最小值为________________________三、解答题(本题共5小题,每题12分,共60分)17、数列{}的首项为,且(1)证明数列为等比数列,并求数列{}的通项公式;(2)若,求数列{}的前n项和18、《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马中,侧棱底面,且,过棱的中点,作交于点,连接(1)证明:.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)记阳马的体积为,四面体的体积为,求的值;(3)若面与面所成二面角的大小为,求的值19、求适合下列条件的双曲线的标准方程:(1)焦点坐标为,且经过点;(2)焦点在坐标轴上,经过点.20、已知椭圆,离心率为,短半轴长为1(1)求椭圆C的方程;(2)已知直线,问:在椭圆C上是否存在点T,使得点T到直线l的距离最大?若存在,请求出这个最大距离;若不存在,请说明理由21、已知等差数列中,,,等比数列中,,(1)求数列的通项公式;(2)记,求的最小值参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.2、答案:A【解析】根据题意,设衰分比为,甲分到石,,然后可得和,解出、的值即可【详解】根据题意,设衰分比为,甲分到石,,又由今共有粮食石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得90石,甲、丙所得之和为164石,则,,解得:,,故选:A3、答案:B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B4、答案:A【解析】根据空间向量平行求出x,y,进而求得答案.【详解】因为,所以存在实数,使得,则.故选:A.5、答案:C【解析】求出函数的导数,再对给定不等式等价变形,分离参数借助均值不等式计算作答.【详解】对函数求导得:,,,则,,而,当且仅当,即时“=”,于是得,解得,所以a的取值范围为.故选:C【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用函数思想是解决问题的关键.6、答案:A【解析】作出不等式组的可行域,利用目标函数的几何意义,利用数形结合的思想求解即可.【详解】画出约束条件