预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年广东实验中学高二数学期末达标检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、设曲线在点处的切线与x轴、y轴分别交于A,B两点,O为坐标原点,则的面积等于()A.1B.2C.4D.62、命题“,”的否定是A.,B.,C.,D.,3、已知直线,,,则m值为()A.B.C.3D.104、若,则()AB.C.D.5、若方程表示圆,则实数m的取值范围为()AB.C.D.6、甲、乙两名射击运动员进行比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,则两人各射击一次恰有一人中靶的概率为()A.0.26B.0.28C.0.72D.0.987、《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深,平面BDEC是水平面,末端宽,无深,长(直线到的距离),则该羡除的体积为()A.B.C.D.8、如图为某几何体的三视图,则该几何体中最大的侧面积是()A.B.C.D.9、已知命题:若直线的方向向量与平面的法向量垂直,则;命题:等轴双曲线的离心率为,则下列命题是真命题的是()A.B.C.D.10、等比数列的公比,中有连续四项在集合中,则等于()A.B.CD.二、填空题(本题共6小题,每题5分,共30分)11、已知空间向量,则向量在坐标平面上的投影向量是__________12、若x,y满足约束条件,则的最小值为___________.13、已知过点作抛物线的两条切线,切点分别为A,B,直线AB经过抛物线C的焦点F,则___________14、已知空间向量,,且,则值为______15、类比教材中推导球体积公式的方法,试计算椭圆T:绕y轴旋转一周后所形成的旋转体(我们称为橄榄球)的体积为________.16、在公差不为的等差数列中,,,成等比数列,数列的前项和为(1)求数列的通项公式;(2)若,且数列的前项和为,求三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆过点,且离心率.(1)求椭圆C的标准方程;(2)若动点在椭圆上,且在第一象限内,点分别为椭圆的左、右顶点,直线分别与椭圆C交于点,过作直线的平行线与椭圆交于点,问直线是否过定点,若经过定点,求出该定点的坐标;若不经过定点,请说明理由.18、已知椭圆:的离心率为,且经过点.(1)求的方程;(2)设的右焦点为F,过F作两条互相垂直的直线AB和DE,其中A,B,D,E都在椭圆上,求的取值范围.19、已知等差数列中,(1)分别求数列的通项公式和前项和;(2)设,求20、已知抛物线的焦点是椭圆的一个焦点,直线交抛物线E于两点(1)求E的方程;(2)若以BC为直径的圆过原点O,求直线l的方程21、(1)证明:;(2)已知:,,且,求证:.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】求出原函数的导函数,得到函数在处的导数值,写出切线方程,分别求得切线在两坐标轴上的坐标,再由三角形面积公式求解【详解】由,得,,又切线过点,曲线在点处的切线方程为,取,得,取,得的面积等于故选:C2、答案:C【解析】特称命题的否定是全称命题,改量词,且否定结论,故命题的否定是“”.本题选择C选项.3、答案:C【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为,且,所以,解得;故选:C4、答案:D【解析】直接利用向量的坐标运算求解即可【详解】因为,所以,故选:D5、答案:D【解析】根据,解不等式即可求解.【详解】由方程表示圆,则,解得.所以实数m的取值范围为.故选:D6、答案:A【解析】依据独立事件同时发生的概率即可求得甲乙两人各射击一次恰有一人中靶的概率.【详解】记甲中靶为事件A,乙中靶为事件B,则甲乙两人各射击一次恰有一人中靶,包含甲中乙不中和甲不中乙中两种情况,则甲乙两人各射击一次恰有一人中靶的概率为故选:A7、答案:C【解析】在,上分别取点,,使得,连接,,,把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算【详解】如图,在,上分别取点,,使得,连接,,,则三棱柱是斜三棱柱,该羡除的体积三棱柱四棱锥.故选:C【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力8、答案:B【解析】由三视图还原原几何体,确定几何体的结构,计算各面面积可得【详解】由三视图,原几何体是三棱锥,平面,,尺寸见三视图,,,故选:B9、答案:D【解析】先判断出p、q的真假,再分别判断四个选项的真假.【详解】因为“若直线的方向向量与平面的法向量垂直,则或”,所以p为