预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年内蒙古赤峰市翁牛特旗乌丹第二中学高二数学第一学期期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为()A.B.C.D.2、数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线已知的顶点,则的欧拉线方程为()A.B.C.D.3、已知点在椭圆上,与关于原点对称,,交轴于点,为坐标原点,,则椭圆离心率为()A.B.C.D.4、已知,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分又不必要条件5、已知等比数列的公比为q,且,则“”是“是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6、已知命题是真命题,那么的取值范围是()A.B.C.D.7、给出下列四个说法,其中正确的是A.命题“若,则”的否命题是“若,则”B.“”是“双曲线的离心率大于”的充要条件C.命题“,”的否定是“,”D.命题“在中,若,则是锐角三角形”的逆否命题是假命题8、设F是双曲线的左焦点,,P是双曲线右支上的动点,则的最小值为()A.5B.C.D.99、程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为()A.120B.84C.56D.2810、若等轴双曲线C过点,则双曲线C的顶点到其渐近线的距离为()A.1B.C.D.2二、填空题(本题共6小题,每题5分,共30分)11、命题“若,则”的否命题为______12、若两条直线与互相垂直,则a的值为______.13、在△ABC中,,AB=3,,则________14、中国古代《易经》一书中记载,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位古人在从右到左依次排列的红绳子上打结,满三进一,用来记录每年进的钱数.由图可得,这位古人一年的收入的钱数为___________.15、已知等比数列的各项均为实数,其前项和为,若,,则__________.16、已知,则曲线在点处的切线方程是______.三、解答题(本题共5小题,每题12分,共60分)17、已知函数,数列的前n项和为,且对一切正整数n、点都在因数的图象上(1)求数列的通项公式;(2)令,数列的前n项和,求证:18、已知椭圆的左、右焦点分别为,,离心率为,过的直线与椭圆交于,两点,若的周长为8.(1)求椭圆的标准方程;(2)设为椭圆上的动点,过原点作直线与椭圆分别交于点、(点不在直线上),求面积的最大值.19、已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,交直线于点,且,.求证:为定值,并计算出该定值.20、已知:,有,:方程表示经过第二、三象限的抛物线,.(1)若是真命题,求实数的取值范围;(2)若“”是假命题,“”是真命题,求实数的取值范围.21、已知二次函数.(1)若时,不等式恒成立,求实数的取值范围.(2)解关于的不等式(其中).参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.2、答案:D【解析】根据题意得出的欧拉线即为线段的垂直平分线,然后求出线段的垂直平分线的方程即可.【详解】因为,所以线段的中点的坐标,线段所在直线的斜率,则线段的垂直平分线的方程为,即,因为,所以的外心、重心、垂心都在线段的垂直平分线上,所以的欧拉线方程为.故选:D【点睛】本题主要考走查直线的方程,解题的关键是准确找出欧拉线,属于中档题.3、答案:B【解析】由,得到,结合,得到,进而求得,得出,结合离心率的定义,即可求解.【详解】设,则,由,可得,所以,因为,可得,又由,两式相减得,即,即,又因为,所以,即又由,所以,解得.故选:B.4、答案:B【解析】根据充分条件和必要条件的定义判断即可求解.【详解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分条件,故选:B.5、答案:B【解析】利用充分条件和必要条件的定义结合等比数列的性质分析判断【详解】当时,则,则数列为递减