预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年辽宁省阜新市博大教育高二数学第一学期期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知圆与圆相交于A、B两点,则圆上的动点P到直线AB距离的最大值为()A.B.C.D.2、已知椭圆的左、右焦点分别为、,点在椭圆上,若,则的面积为()A.B.C.D.3、已知函数的图象过点,令.记数列的前n项和为,则()A.B.C.D.4、在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A.B.C.D.5、已知直线经过抛物线的焦点,且与该抛物线交于,两点,若满足,则直线的方程为()A.B.C.D.6、在等差数列中,,则等于A.2B.18C.4D.97、等差数列x,,,…的第四项为()A.5B.6C.7D.88、若圆与圆相切,则的值为()A.B.C.或D.或9、某学校要从5名男教师和3名女教师中随机选出3人去支教,则抽取的3人中,女教师最多为1人的选法种数为()A.10B.30C.40D.4610、若抛物线与直线:相交于两点,则弦的长为()A.6B.8C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知、均为正实数,且,则的最小值为___________.12、如图,在长方体ABCD﹣A'B'C'D'中,点P,Q分别是棱BC,CD上的动点,BC=4,CD=3,CC'=2,直线CC'与平面PQC'所成的角为30°,则△PQC'的面积的最小值是__13、若,则__________14、若是直线外一点,为线段的中点,,,则______15、已知、是椭圆()长轴的两个端点,、是椭圆上关于轴对称的两点,直线,的斜率分别为,().若椭圆的离心率为,则的最小值为______16、从1,2,3,4,5中任取两个不同的数,其中一个作为对数的底数a,另一个作为对数的真数b.则的概率为______.三、解答题(本题共5小题,每题12分,共60分)17、某学校高一、高二、高三的三个年级学生人数如下表,按年级分层抽样的方法评选优秀学生50人,其中高三有10人.高三高二高一女生100150z男生300450600(1)求z的值;(2)用分层抽样的方法在高一学生中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取8人,经检测她们的得分如图所示,把这8人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过5分的概率.18、已知函数(1)当时,求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数a的取值范围19、如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点(1)求证:D1F平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值.20、已知抛物线的方程为,点,过点的直线交抛物线于,两点(1)是否为定值?若是,求出该定值;若不是,说明理由;(2)若点是直线上的动点,且,求面积的最小值21、已知圆M的方程为.(1)写出圆M的圆心坐标和半径;(2)经过点的直线l被圆M截得弦长为,求l的方程.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】判断圆与的位置并求出直线AB方程,再求圆心C到直线AB距离即可计算作答.【详解】圆的圆心,半径,圆的圆心,半径,,,即圆与相交,直线AB方程为:,圆的圆心,半径,点C到直线AB距离的距离,所以圆C上的动点P到直线AB距离的最大值为.故选:A2、答案:B【解析】求出,可知为等腰三角形,取的中点,可得出,利用勾股定理求得,利用三角形的面积公式可求得结果.【详解】在椭圆中,,,则,所以,,由椭圆的定义可得,取的中点,因为,则,由勾股定理可得,所以,.故选:B.3、答案:D【解析】由已知条件推导出,.由此利用裂项求和法能求出【详解】解:由,可得,解得,则.∴,故选:【点睛】本题考查了函数的性质、数列的“裂项求和”,考查了推理能力与计算能力,属于中档题4、答案:A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.5、答案:C【解析】求出抛物线的焦点,设出直线方程,代入抛物线方程,运用韦达定理和向量坐标表示,解得,即可得出直线的方