预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年福建省海滨学校、港尾中学高二数学期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、若函数在上有两个极值点,则下列选项中不正确的为()A.B.C.D.2、在中,角A,B,C所对的边分别为a,b,c,,则的形状为()A.正三角形B.等腰直角三角形C.直角三角形D.等腰三角形3、双曲线C:的右焦点为F,过点F作双曲线C的两条渐近线的垂线,垂足分别为H1,H2.若,则双曲线C的离心率为()A.B.C.D.24、已知数列满足,在任意相邻两项与(k=1,2,…)之间插入个2,使它们和原数列的项构成一个新的数列.记为数列的前n项和,则的值为()A.162B.163C.164D.1655、已知的二项展开式的各项系数和为32,则二项展开式中的系数为A5B.10C.20D.406、已知,分别为椭圆的左右焦点,为坐标原点,椭圆上存在一点,使得,设的面积为,若,则该椭圆的离心率为()A.B.C.D.7、学校开设甲类选修课3门,乙类选修课4门,从中任选3门,甲乙两类课程都有选择的不同选法种数为()A.24B.30C.60D.1208、已知函数的导函数为,若的图象如图所示,则函数的图象可能是()A.B.C.D.9、已知m,n表示两条不同直线,表示两个不同平面.设有两个命题::若,则;:若,则.则下列命题中为真命题的是()A.B.C.D.10、直线的倾斜角是()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、数列满足,,则___________.12、在正方体中,二面角的大小为__________(用反三角表示)13、如图茎叶图记录了A、两名营业员五天的销售量,若A的销售量的平均数比的销售量的平均数多1,则A营业员销售量的方差为___________.14、已知球面上的三点A,B,C满足,,,球心到平面ABC的距离为,则球的表面积为______15、已知抛物线C:的焦点为F,准线为l,过点F斜率为的直线与抛物线C交于点M(M在x轴的上方),过M作于点N,连接NF交抛物线C于点Q,则__________16、在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.三、解答题(本题共5小题,每题12分,共60分)17、已知数列,,其中,是各项均为正数的等比数列,满足,,且(1)求数列,的通项公式;(2)设,求数列的前n项和18、已知圆C的圆心在坐标原点,且过点M()(1)求圆C的方程;(2)已知点P是圆C上的动点,试求点P到直线的距离的最小值;19、一杯100℃的开水放在室温25℃的房间里,1分钟后水温降到85℃,假设每分钟水温变化量和水温与室温之差成正比(1)分别求2分钟,3分钟后的水温;(2)记n分钟后的水温为,证明:是等比数列,并求出的通项公式;(3)当水温在40℃到55℃之间时(包括40℃和55℃),为最适合饮用的温度,则在水烧开后哪个时间段饮用最佳.(参考数据:)20、如图,在四棱锥中,平面,,且,,,,,为的中点(1)求证:平面;(2)在线段上是否存在一点,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,说明理由21、已知数列与满足(1)若,且,求数列的通项公式;(2)设的第k项是数列的最小项,即恒成立.求证:的第k项是数列的最小项;(3)设.若存在最大值M与最小值m,且,试求实数的取值范围参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】求导,根据题意可得,从而可得出答案.【详解】解:,因为函数在上有两个极值点,所以,即.所以ABD正确,C错误.故选:C.2、答案:C【解析】根据三角恒等变换结合正弦定理化简求得,即可判定三角形形状.【详解】解:由题,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形为直角三角形.故选:C.3、答案:D【解析】将条件转化为该双曲线的一条渐近线的倾斜角为,可得,由离心率公式即可得解.【详解】由题意,(为坐标原点),所以该双曲线的一条渐近线的倾斜角为,所以,即,所以离心率.故选:D.4、答案:C【解析】确定数列的前70项含有的前6项和64个2,从而求出前70项和.【详解】,其中之间插入2个2,之间插入4个2,之间插入8个2,之间插入16个2,之间插入32个2,之间插入64个2,由于,,故数列的前70项含有的前6项和64个2,故故选:C5、答案:B【解析】首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,,所以二项展开式中的系数为.答案选择B【点睛】本题考查二项式展开系数、通项等公式,属于基础题6、答案:D【解析】由可得直角三角形,故,且,结合,联立可得