预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届陕西省西安市高新第一中学国际部高二数学第一学期期末统考模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知空间向量,,且,则的值为()A.B.C.D.2、直线的倾斜角的大小为A.B.C.D.3、若直线与双曲线相交,则的取值范围是A.B.C.D.4、已知直线和圆相交于两点.若,则的值为()A.B.C.D.5、饕餮纹是青铜器上常见的花纹之一,最早见于长江中下游地区的良渚文化陶器和玉器上,盛行于商代至西周早期.将青铜器中的饕餮纹的一部分画到方格纸上,如图所示,每个小方格的边长为一个单位长度,有一点从点出发,每次向右或向下跳一个单位长度,且向右或向下跳是等可能的,那么点经过3次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A.B.C.D.6、是数列,,,-17,中的第几项()A第项B.第项C.第项D.第项7、若是双曲线的左右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为,若,则该双曲线的离心率为()A.B.C.D.8、已知函数(且,)的一个极值点为2,则的最小值为()A.B.C.D.79、函数的导函数的图像如图所示,则()A.为的极大值点B.为的极大值点C.为的极大值点D.为的极小值点10、在平面直角坐标系中,双曲线C:的左焦点为F,过F且与x轴垂直的直线与C交于A,B两点,若是正三角形,则C的离心率为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、函数在处的切线与平行,则________.12、数列中,,,,则______13、曲线在点处的切线方程为_____________________.14、沈阳市某高中有高一学生600人,高二学生500人,高三学生550人,现对学生关于消防安全知识了解情况进行分层抽样调查,若抽取了一个容量为n的样本,其中高三学生有11人,则n的值等于________.15、如图的形状出现存南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”的最一上层有1个球,第二层有3个球,第三层有6个球……,设从上至下各层球数构成一个数列则___________.(填数字)16、已知向量,,若,则实数m的值是___________.三、解答题(本题共5小题,每题12分,共60分)17、已知函数.(1)讨论的单调性;(2)任意,恒成立,求的取值范围.18、已知:在四棱锥中,底面为正方形,侧棱平面,点为中点,.(1)求证:平面平面;(2)求直线与平面所成角大小;(3)求点到平面的距离.19、已知等比数列的公比,,.(1)求数列的通项公式;(2)令,若,求满足条件的最大整数n.20、求下列不等式的解集:(1);(2)21、如图,在直三棱柱中,,,D为的中点(1)求证:平面;(2)求平面与平面的夹角的余弦值;(3)若E为的中点,求与所成的角参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】根据向量垂直得,即可求出的值.【详解】.故选:B.2、答案:A【解析】考点:直线的倾斜角专题:计算题分析:因为直线的斜率是倾斜角的正切值,所以欲求直线的倾斜角,只需求出直线的斜率即可,把直线化为斜截式,可得斜率,问题得解解答:解:∵x-y+1=0可化为y=x+,∴斜率k=设倾斜角为θ,则tanθ=k=,θ∈[0,π)∴θ=故选A点评:本题主要考查了直线的倾斜角与斜率之间的关系,属于直线方程的基础题型,需要学生对基础知识熟练掌握3、答案:C【解析】联立直线和双曲线的方程得到,即得的取值范围.【详解】联立直线和双曲线的方程得当,即时,直线和双曲线的渐近线重合,所以直线与双曲线没有公共点.当,即时,,解之得.故选:C.【点睛】本题主要考查直线和双曲线的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.4、答案:C【解析】求出圆心到直线的距离,再利用,化简求值,即可得到答案.【详解】圆的圆心为,圆心到直线的距离公式为,故故选:C.5、答案:B【解析】利用古典概型的概率求解.【详解】解:点从点出发,每次向右或向下跳一个单位长度,跳3次,则样本空间{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},记“3次跳动后,恰好是沿着饕餮纹的路线到达点B”为事件,则{(下,下,右)},由古典概型的概率公式可知故选:B6、答案:C【解析】利用等差数列的通项公式即可求解【详解】设数列,,,,是首项为,公差d=-4的等差数列{},,令,得故选:C7、答案:D【解析】根据已知条件,找出,的齐次关系式即可得到双曲线的离心率.【详解】由题意得,,,在中,,因,故,在,由余弦定理得,即,计算得,故.故选:D.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围