预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届甘肃省庆阳第一中学高二数学第一学期期末检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、数列的通项公式是()A.B.C.D.2、有这样一道题目:“戴氏善屠,日益功倍.初日屠五两,今三十日屠讫,向共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?"在这个问题中,该屠夫前5天所屠肉的总两数为()A.35B.75C.155D.3153、已知点为直线上任意一点,为坐标原点.则以为直径的圆除过定点外还过定点()A.B.C.D.4、阿基米德(Archimedes,公元前287年-公元前212年),出生于古希腊西西里岛叙拉古(今意大利西西里岛上),伟大的古希腊数学家、物理学家,与高斯、牛顿并称为世界三大数学家.有一类三角形叫做阿基米德三角形(过抛物线的弦与过弦端点的两切线所围成的三角形),他利用“通近法”得到抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的(即右图中阴影部分面积等于面积的).若抛物线方程为,且直线与抛物线围成封闭图形的面积为6,则()A.1B.2C.D.35、在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和.若一个直角三角形的斜边长等于则这个直角三角形周长的最大值为()A.B.C.D.6、设AB是椭圆()的长轴,若把AB一百等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99,F1为椭圆的左焦点,则的值是()A.B.C.D.7、已知向量QUOTE,且向量与互相垂直,则的值是()A.B.C.D.8、函数,的最小值为()A.2B.3C.D.9、如图,在四面体中,,,,点为的中点,,则()A.B.C.D.10、在中,B=30°,BC=2,AB=,则边AC的长等于()A.B.1C.D.2二、填空题(本题共6小题,每题5分,共30分)11、抛物线的准线方程为_______.12、已知正数,满足.若恒成立,则实数的取值范围是______.13、如图,图形中的圆是正方形的内切圆,点E,F,G,H为对角线与圆的交点,若向正方形内随机投入一点,则该点落在阴影部分区域内的概率为_________14、已知等比数列中,则q=___15、已知等比数列的前n和为,若成等差数列,且,,则的值为_______________16、函数的图象在点处的切线方程为____.三、解答题(本题共5小题,每题12分,共60分)17、某车间打算购买2台设备,该设备有一个易损零件,在购买设备时可以额外购买这种易损零件作为备件,价格为每个100元.在设备使用期间,零件损坏,备件不足再临时购买该零件,价格为每个300元.在使用期间,每台设备需要更换的零件个数的分布列为567.表示2台设备使用期间需更换的零件数,代表购买2台设备的同时购买易损零件的个数.(1)求的分布列;(2)以购买易损零件所需费用的期望为决策依据,试问在和中,应选哪一个?18、已知空间内不重合的四点A,B,C,D的坐标分别为,,,,且(1)求k,t的值;(2)求点B到直线CD的距离19、已知椭圆的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设斜率为k的直线与椭圆C交于两点,O为坐标原点,若的面积为定值,判断是否为定值,如果是,求出该定值;如果不是,说明理由.20、在四棱锥中,平面,底面是边长为2的菱形,分别为的中点.(1)证明:平面;(2)求三棱锥的体积.21、已知椭圆的焦距为,左、右焦点分别为,为椭圆上一点,且轴,,为垂足,为坐标原点,且(1)求椭圆的标准方程;(2)过椭圆的右焦点的直线(斜率不为)与椭圆交于两点,为轴正半轴上一点,且,求点的坐标参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】根据数列前几项,归纳猜想出数列的通项公式.【详解】依题意,数列的前几项为:;;;……则其通项公式.故选C.【点睛】本小题主要考查归纳推理,考查数列通项公式的猜想,属于基础题.2、答案:C【解析】构造等比数列模型,利用等比数列的前项和公式计算可得结果.【详解】由题意可得该屠夫每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此前5天所屠肉的总两数为.故选:C.【点睛】本题考查了等比数列模型,考查了等比数列的前项和公式,属于基础题.3、答案:D【解析】设垂直于直线,可知圆恒过垂足;两条直线方程联立可求得点坐标.【详解】设垂直于直线,垂足为,则直线方程为:,由圆的性质可知:以为直径的圆恒过点,由得:,以为直径的圆恒过定点.故选:D.4、答案:D【解析】根据题目所