预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年甘肃省庆阳第一中学高二数学第一学期期末质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、圆与圆的公切线的条数为()A.1B.2C.3D.42、设,则当数列{an}的前n项和取得最小值时,n的值为()A.4B.5C.4或5D.5或63、已知是上的单调增函数,则的取值范围是A.﹣1b2B.﹣1b2C.b﹣2或b2D.b﹣1或b24、已知双曲线,过点作直线l与双曲线交于A,B两点,则能使点P为线段AB中点的直线l的条数为()A.0B.1C.2D.35、已知数列中,,(),则()A.B.C.D.26、如图,在平行六面体中,为与的交点,若,,,则的值为()A.B.C.D.7、已知命题p:,,则()A.,B.,C.,D.,8、若,则n的值为()A.7B.8C.9D.109、数列2,,9,,的一个通项公式可以是()A.B.C.D.10、已知向量为平面的法向量,点在内,点在外,则点到平面的距离为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知球的半径为3,则该球的体积为_________.12、已知椭圆方程为,左、右焦点分别为、,P为椭圆上的动点,若的最大值为,则椭圆的离心率为___________.13、若直线与直线平行,则实数m的值为____________14、过点作圆的切线,则切线方程为______.15、如图,在直三棱柱中,,为中点,则平面与平面夹角的正切值为___________.16、已知数列满足,若对任意恒成立,则实数的取值范围为________三、解答题(本题共5小题,每题12分,共60分)17、在中,角、、所对的边分别为、、,且(1)求证;、、成等差数列;(2)若,的面积为,求的周长18、已知正三棱柱底面边长为,是上一点,是以为直角顶点的等腰直角三角形,(1)证明:是的中点;(2)求二面角的大小19、如图,在四棱锥中,底面ABCD为直角梯形,,平面ABCD,,.(1)求点B到平面PCD的距离;(2)求二面角的平面角的余弦值.20、一个长方体的平面展开图及该长方体的直观图的示意图如图所示(1)请将字母F,G,H标记在长方体相应的顶点处(不需说明理由):(2)若且有下面两个条件:①;②,请选择其中一个条件,使得DF⊥平面,并证明你的结论21、设正项数列的前项和为,已知,(1)求数列的通项公式;(2)数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】公切线条数与圆与圆的位置关系是相关的,所以第一步需要判断圆与圆的位置关系.【详解】圆的圆心坐标为,半径为3;圆的圆心坐标为,半径为1,所以两圆的心心距为,所以两圆相离,公切线有4条.故选:D.2、答案:A【解析】结合等差数列的性质得到,解不等式组即可求出结果.【详解】由,即,解得,因为,故.故选:A.3、答案:A【解析】利用三次函数的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题【详解】∵∴∵函数是上的单调增函数∴在上恒成立∴,即.∴故选A.【点睛】可导函数在某一区间上是单调函数,实际上就是在该区间上(或)(在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式来进行求解.4、答案:A【解析】先假设存在这样的直线,分斜率存在和斜率不存在设出直线的方程,当斜率k存在时,与双曲线方程联立,消去,得到关于的一元二次方程,直线与双曲线相交于两个不同点,则,,又根据是线段的中点,则,由此求出与矛盾,故不存在这样的直线满足题意;当斜率不存在时,过点的直线不满足条件,故符合条件的直线不存在.详解】设过点的直线方程为或,①当斜率存在时有,得(*)当直线与双曲线相交于两个不同点,则必有:,即又方程(*)的两个不同的根是两交点、的横坐标,又为线段的中点,,即,,使但使,因此当时,方程①无实数解故过点与双曲线交于两点、且为线段中点的直线不存在②当时,经过点的直线不满足条件.综上,符合条件的直线不存在故选:A5、答案:A【解析】由已知条件求出,可得数是以3为周期的周期数列,从而可得,进而可求得答案【详解】因为,(),所以,所以数列的周期为3,,故选:A6、答案:D【解析】将用基底表示,然后利用空间向量数量积的运算性质可求得结果.【详解】因为四边形为平行四边形,且,则为的中点,,则.故选:D7、答案:C【解析】由全称命题的否定:将任意改存在并否定结论,即可写出原命题p的否定.【详解】由全称命题的否定为特称命题,∴是“,”.故选:C.8、答案:D【解析】根据给定条件利用组合数的性质计算作答【详解】因为,则由组合数性质有,即,所以n的值为10.故选:D9、答案:C【