预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届江苏省徐州侯集高级中学高二数学第一学期期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、设双曲线的实轴长为8,一条渐近线为,则双曲线的方程为()A.B.C.D.2、若构成空间向量的一组基底,则下列向量不共面的是()A.,,B.,,C.,,D.,,3、命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1}B.{a|a≤﹣1}C.{a|a≥﹣1}D.{a|a>﹣1}4、已知直线,两个不同的平面,下列命题正确的是()A.若,,则B.若,,则C.若,,则D.若,,则5、已知直线l与圆交于A,B两点,点满足,若AB的中点为M,则的最大值为()A.B.C.D.6、命题:“,”的否定是()A.,B.,C.,D.,7、七巧板是中国古代劳动人民发明的一种传统智力玩具,它由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为()A.B.C.D.8、如图1所示,抛物面天线是指由抛物面(抛物线绕其对称轴旋转形成的曲面)反射器和位于其焦点上的照射器(馈源,通常采用喇叭天线)组成的单反射面型天线,广泛应用于微波和卫星通讯等,具有结构简单、方向性强、工作频带宽等特点.图2是图1的轴截面,,两点关于抛物线的对称轴对称,是抛物线的焦点,是馈源的方向角,记为.焦点到顶点的距离与口径的比为抛物面天线的焦径比,它直接影响天线的效率与信噪比等.若馈源方向角满足,则该抛物面天线的焦径比为()A.B.C.D.29、已知数列的前项和为,满足,,,则()A.B.C.,,成等差数列D.,,成等比数列10、已知点,,直线:与线段相交,则实数的取值范围是()A.或B.或C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知椭圆的右顶点为P,右焦点F与抛物线的焦点重合,的顶点与的中心O重合.若与相交于点A,B,且四边形为菱形,则的离心率为___________.12、方程()所表示的直线恒过定点________13、在一村庄正西方向处有一台风中心,它正向东北方向移动,移动速度的大小为,距台风中心以内的地区将受到影响,若台风中心的这种移动趋势不变,则村庄所在地大约有_______小时会受到台风的影响.(参考数据:)14、椭圆的长轴长为______15、传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数.用一点(或一个小石子)代表1,两点(或两个小石子)代表2,三点(或三个小石子)代表3,…他们研究了各种平面数(包括三角形数、正方形数、长方形数、五边形数、六边形数等等)和立体数(包括立方数、棱锥数等等).如前四个四棱锥数为第n个四棱锥数为1+4+9+…+n2=.中国古代也有类似的研究,如图的形状出现在南宋数学家杨辉所著的《详解九章算法•商功》中,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…若一个“三角垛”共有20层,则第6层有____个球,这个“三角垛”共有______个球16、矩形ABCD中,,在CD边上任取一点M,则的最大边是AB的概率为______三、解答题(本题共5小题,每题12分,共60分)17、已知抛物线的焦点为,点在第一象限且为抛物线上一点,点在点右侧,且△恰为等边三角形(1)求抛物线的方程;(2)若直线与交于两点,向量的夹角为(其中为坐标原点),求实数的取值范围.18、已知,.(1)若,为假命题,求的取值范围;(2)若是的必要不充分条件,求实数的取值范围.19、已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)过点作圆C的切线,求切线的方程20、某双曲线型自然冷却通风塔的外形是由图1中的双曲线的一部分绕其虚轴所在的直线旋转一周所形成的曲面,如图2所示.双曲线的左、右顶点分别为、.已知该冷却通风塔的最窄处是圆O,其半径为1;上口为圆,其半径为;下口为圆,其半径为;高(即圆与所在平面间的距离)为.(1)求此双曲线的方程;(2)以原平面直角坐标系的基础上,保持原点和x轴、y轴不变,建立空间直角坐标系,如图3所示.在上口圆上任取一点,在下口圆上任取一点.请给出、的值,并求出与的值;(3)在(2)的条件下,是否存在点P、Q,使得P、A、Q三点共线.若不存在,请说明理由;若存在,求出点P、Q的坐标,并证明此时线段PQ上任意一点都在曲面上.21、已知圆:,过圆外一点作圆的两条切线,,,为切点,设为圆上的一个动点.(1)求的取值范围;(2)求直线的方程.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】双曲线的实轴长为,渐近线方程为,代入解析式即可得到结果.【详解】双曲线的实轴长为8,即,,渐近线方程为,进而得到双曲线方程为.故选:D.2、答