预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届天水市重点中学高二数学第二学期期末学业质量监测试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知矩形,,,沿对角线将折起,若二面角的余弦值为,则与之间距离为()A.B.C.D.2、设点P是函数图象上任意一点,点Q的坐标,当取得最小值时圆C:上恰有2个点到直线的距离为1,则实数r的取值范围为()A.B.C.D.3、下列各式正确的是()A.B.C.D.4、已知直线过点,且与直线垂直,则直线的方程是()A.B.C.D.5、为了防控新冠病毒肺炎疫情,某市疾控中心检测人员对外来入市人员进行核酸检测,人员甲、乙均被检测.设命题为“甲核酸检测结果为阴性”,命题为“乙核酸检测结果为阴性”,则命题“至少有一位人员核酸检测结果不是阴性”可表示为()A.B.C.D.6、已知抛物线,过点与抛物线C有且只有一个交点的直线有()条A.0B.1C.2D.37、已知函数在处的导数为,则()A.B.C.D.8、函数的导函数的图像如图所示,则()A.为的极大值点B.为的极大值点C.为的极大值点D.为的极小值点9、对于实数a,b,c,下列命题中的真命题是()A.若,则B.,则C.若,,则,D.若,则10、已知集合,则()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、抛物线的准线方程为_______.12、已知、是椭圆()长轴的两个端点,、是椭圆上关于轴对称的两点,直线,的斜率分别为,().若椭圆的离心率为,则的最小值为______13、设,则曲线在点处的切线的倾斜角是_______14、阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期的数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上动点P到两定点A,B的距离之比满足(且,t为常数),则点的轨迹为圆.已知在平面直角坐标系中,,,动点P满足,则P点的轨迹为圆,该圆方程为_________;过点的直线交圆于两点,且,则_________15、定义在R上的函数满足,其中为自然对数的底数,,则满足的a的取值范围是__________.16、在平行六面体中,点P是AC与BD的交点,若,且,则___________.三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆的离心率为,左、右焦点分别为,,过的直线交椭圆E于A,B两点.当轴时,(1)求椭圆E的方程;(2)求的范围18、已知,,分别是锐角内角,,对边,,.(1)求的值;(2)若的面积为,求的值.19、在平面直角坐标系xOy中,已知抛物线()的焦点F到双曲线的渐近线的距离为1.(1)求抛物线C的方程;(2)若不经过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点.20、已知是函数的一个极值点.(1)求实数的值;(2)求函数在区间上的最大值和最小值.21、已知数列中,数列的前n项和为满足.(1)证明:数列为等比数列;(2)在和中插入k个数构成一个新数列:,2,,4,6,,8,10,12,,…,其中插入的所有数依次构成首项和公差都为2的等差数列.求数列的前50项和.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,分析可知二面角的平面角为,利用余弦定理求出,证明出,再利用勾股定理可求得的长.【详解】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,因为,,,则,因为,由等面积法可得,同理可得,由勾股定理可得,同理可得,,因为四边形为平行四边形,且,故四边形为矩形,所以,,因为,所以,二面角的平面角为,在中,,,由余弦定理可得,,,,则,,因为,平面,平面,则,,由勾股定理可得.故选:C.2、答案:C【解析】先求出代表的是以为圆心,2为半径的圆的位于x轴下方部分(包含x轴上的部分),数形结合得到取得最小值时a的值,得到圆心C,利用点到直线距离求出圆心C到直线的距离,数形结合求出半径r的取值范围.【详解】,两边平方得:,即点P在以为圆心,2为半径的圆的位于x轴下方部分(包含x轴上的部分),如图所示:因为Q的坐标为,则在直线,过点A作⊥l于点,与半圆交于点,此时长为的最小值,则,所以直线:,与联立得:,所以,解得:,则圆C:,则,圆心到直线的距离为,要想圆C上恰有2个点到直线的距离为1,则.故选:C3、答案:C【解析】利用导数的四则运算即可求解.【详解】对于A,,故A错误;对于B,,故B错误;对于C,,故C正确;对于D,,故D错误;故选:C4、答案:D【解析】由题意设直线方程为,然后将点坐标代入求出,从而可求出直线方程【详解】因为直线与直线垂直,所以设直线方程为,因为直线过点,所以,得,所以直线方程为,故选:D5、答案:D【解析】表示出和,直接判断即可.【详解】命题为“甲核酸检测结果为阴性”,则命题为“甲核