预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年河南省九师联盟高二数学期末复习检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、若正三棱柱的所有棱长都相等,D是的中点,则直线AD与平面所成角的正弦值为A.B.C.D.2、设的内角的对边分别为的面积,则()A.B.C.D.3、抛物线准线方程为()A.B.C.D.4、已知双曲线的一条渐近线方程为,它的焦距为2,则双曲线的方程为()AB.C.D.5、“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A.B.C.D.6、已知为偶函数,且当时,,其中为的导数,则不等式的解集为()A.B.C.D.7、如图所示,为了测量A,B处岛屿的距离,小张在D处观测,测得A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶10海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为()海里.A.B.C.D.108、若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4B.-4C.2D.-29、一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线10、设双曲线C:的左、右焦点分别为,点P在双曲线C上,若线段的中点在y轴上,且为等腰三角形,则双曲线C的离心率为()AB.2C.D.二、填空题(本题共6小题,每题5分,共30分)11、若过点和的直线与直线平行,则_______12、已知椭圆的两个焦点分别为,,,点在椭圆上,若,且的面积为4,则椭圆的标准方程为______13、已知椭圆的左、右顶点分别为A,B,椭圆C的左、右焦点分别为F1,F2,点为椭圆C的下顶点,直线MA与MB的斜率之积为.(1)求椭圆C的方程;(2)设点P,Q为椭圆C上位于x轴下方的两点,且,求四边形面积的最大值.14、在数列中,,,则数列的前6项和为___________.15、若函数在x=1处的切线与直线y=kx平行,则实数k=___________.16、若曲线在处的切线平行于x轴,则___________.三、解答题(本题共5小题,每题12分,共60分)17、已知数列的前n项和为满足(1)求证:是等比数列,并求数列通项公式;(2)若,数列的前项和为.求证:18、(1)若在是减函数,求实数m的取值范围;(2)已知函数在R上无极值点,求a的值.19、已知等差数列中,,.(1)求的通项公式;(2)求的前项和的最大值.20、某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布表如图所示.组号分组频数频率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?(3)在(2)的前提下,从抽到6名学生中再随机抽取2名被甲考官面试,求这2名学生来自同一组的概率.21、已知:圆是的外接圆,边所在直线的方程为,中线所在直线的方程为,直线与圆相切于点.(1)求点和点的坐标;(2)求圆的方程.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】建立空间直角坐标系,得到相关点的坐标后求出直线的方向向量和平面的法向量,借助向量的运算求出线面角的正弦值【详解】取AC的中点为坐标原点,建立如图所示的空间直角坐标系设三棱柱的棱长为2,则,∴设为平面的一个法向量,由故令,得设直线AD与平面所成角为,则,所以直线AD与平面所成角的正弦值为故选A【点睛】空间向量的引入为解决立体几何问题提供了较好的方法,解题时首先要建立适当的坐标系,得到相关点的坐标后借助向量的运算,将空间图形的位置关系或数量关系转化为向量的运算处理.在解决空间角的问题时,首先求出向量夹角的余弦值,然后再转化为所求的空间角.解题时要注意向量的夹角和空间角之间的联系和区别,避免出现错误2、答案:A【解析】利用三角形面积公式、二倍角正弦公式有,再由三角形内角的性质及余弦定理化简求即可.【详解】由,∴,在中,,∴,解得.故选:A.3、答案:D【解析】由抛物线的准线方程即可求解【详解】由抛物线方程得:.所以,抛物线的准线方程为故选D【点睛】本题主要考查了抛物线的准线方程,属于基础题4、答案:B【解析】根据双曲线的一条渐近线方程为,可得,再结合焦距为2和,求得,即可得解.【详解】解:因为双曲线的一条渐近线方程为,所以,即,又因焦距为2,即,即,因为,所以,所以,所以双曲线的方程为.故选:B.5、答案:D【解析】分析:根据等比数列的定义可知每一个单音的频率成