预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年嘉峪关市重点中学高二数学期末经典模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知点是椭圆上一点,点,则的最小值为A.B.C.D.2、若点P在曲线上运动,则点P到直线的距离的最大值为()A.B.2C.D.43、若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4B.-4C.2D.-24、用数学归纳法证明“”时,由假设证明时,不等式左边需增加的项数为()A.B.C.D.5、设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件6、若,则x的值为()A.4B.6C.4或6D.87、已知直线,,点是抛物线上一点,则点到直线和的距离之和的最小值为()A.2B.C.3D.8、若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C.6D.99、在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长的一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺B.34.5尺C.37.5尺D.96尺10、空间四点共面,但任意三点不共线,若为该平面外一点且,则实数的值为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知正四面体ABCD中,E,F分别是线段BC,AD的中点,点G是线段CD上靠近D的四等分点,则直线EF与AG所成角的余弦值为______12、若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为_________13、已知数列的前n项和为,则取得最大值时n的值为__________________14、已知过点作抛物线的两条切线,切点分别为A、B,直线经过抛物线C的焦点F,则___________15、设有下列命题:①当,时,不等式恒成立;②函数在上的最小值为2;③函数在上的最大值为;④若,,且,则的最小值为其中真命题为________________.(填写所有真命题的序号)16、已知抛物线C:y2=2px过点P(1,1):①点P到抛物线焦点的距离为②过点P作过抛物线焦点的直线交抛物线于点Q,则△OPQ的面积为③过点P与抛物线相切的直线方程为x-2y+1=0④过点P作两条斜率互为相反数的直线交抛物线于M,N两点,则直线MN的斜率为定值其中正确的是________.三、解答题(本题共5小题,每题12分,共60分)17、已知集合,,.(1)求;(2)若“”是“”的必要不充分条件,求实数a的取值范围.18、设等差数列的前项和为,为各项均为正数的等比数列,且,,再从条件①:;②:;③:这三个条件中选择一个作为已知,解答下列问题:(1)求和的通项公式;(2)设,数列的前项和为,求证:19、已知圆与轴相切,圆心在直线上,且到直线的距离为(1)求圆的方程;(2)若圆的圆心在第一象限,过点的直线与相交于、两点,且,求直线的方程20、如图,在四棱锥P-ABCD中,底面ABCD是一个直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,点M和点N分别为PA和PC的中点(1)证明:直线DM∥平面PBC;(2)求直线BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求点P到平面DBN距离;(5)设点N在平面BDM内的射影为点H,求线段HA的长21、设圆的圆心为﹐直线l过点且与x轴不重合,直线l交圆于A,B两点.过作的平行线交于点P.(1)求点P的轨迹方程;(2)设点P的轨迹为曲线E,直线l交E于M,N两点,C在线段上运动,原点O关于C的对称点为Q,求四边形面积的取值范围;参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】设,则,.所以当时,的最小值为.故选D.2、答案:A【解析】由方程确定曲线的形状,然后转化为求圆上的点到直线距离的最大值【详解】由曲线方程为知曲线关于轴成轴对称,关于原点成中心对称图形,在第一象限内,方程化为,即,在第一象限内,曲线是为圆心,为半径的圆在第一象限的圆弧(含坐标轴上的点),实际上整个曲线就是这段圆弧及其关于坐标轴.原点对称的图形加上原点,点到直线的距离为,所以所求最大值为故选:A3、答案:B【解析】根据抛物线和椭圆焦点与其各自标准方程的关系即可求解.【详解】由题可知抛物线焦点为,椭圆左焦点为,∴.故选:B.4、答案:C【解析】当成立,写出左侧的表达式,当时,写出对应的关系式,观察计算即可【详解】从到成立时,左边增加的项为,因此增加的项数是,故选: