预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年嘉峪关市重点中学高二数学第一学期期末经典模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、椭圆的长轴长是()A.3B.4C.6D.82、若函数,当时,平均变化率为3,则等于()A.B.2C.3D.13、《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得,,,,递减的比例为,那么“衰分比”就等于,今共有粮石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得石,甲、丙所得之和为石,则“衰分比”为()A.B.C.D.4、下列说法中正确的是()A.棱柱的侧面可以是三角形B.棱台的所有侧棱延长后交于一点C.所有几何体的表面都能展开成平面图形D.正棱锥的各条棱长都相等5、设是两个非零向量,则“”是“夹角为钝角”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6、已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A.B.3C.D.27、设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值8、在空间直角坐标系中,若,,则点B的坐标为()A.(3,1,﹣2)B.(-3,1,2)C.(-3,1,-2)D.(3,-1,2)9、设函数的导函数是,若,则()A.B.C.D.10、已知为坐标原点,点的坐标为,点的坐标满足,则的最小值为()AB.C.D.4二、填空题(本题共6小题,每题5分,共30分)11、已知实数,,,满足,,,则的最大值是______12、阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期的数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上动点P到两定点A,B的距离之比满足(且,t为常数),则点的轨迹为圆.已知在平面直角坐标系中,,,动点P满足,则P点的轨迹为圆,该圆方程为_________;过点的直线交圆于两点,且,则_________13、若,,,四点中恰有三点在椭圆上,则椭圆C的方程为________.14、函数的单调递减区间是___________.15、六面体的所有棱长都为2,底面ABCD是正方形,AC与BD的交点是O,若,则___________.16、已知随机变量X服从正态分布,若,则______三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆:经过点为,且.(1)求椭圆的方程;(2)若直线与椭圆相切于点,与直线相交于点.已知点,且,求此时的值.18、已知直线经过椭圆的右焦点,且椭圆C的离心率为(1)求椭圆C的标准方程;(2)以椭圆的短轴为直径作圆,若点M是第一象限内圆周上一点,过点M作圆的切线交椭圆C于P,Q两点,椭圆C的右焦点为,试判断的周长是否为定值.若是,求出该定值19、设椭圆的焦距为,原点到经过两点的直线的距离为.(1)求椭圆的离心率;(2)如图所示,是圆的一条直径,若椭圆经过两点,求椭圆的标准方程20、已知各项均为正数的等比数列{}的前4项和为15,且.(1)求{}的通项公式;(2)若,记数列{}前n项和为,求.21、为了了解某工厂生产的产品情况,从该工厂生产的产品随机抽取了一个容量为200的样本,测量它们的尺寸(单位:),数据分为,,,,,,七组,其频率分布直方图如图所示.(1)根据频率分布直方图,求200件样本中尺寸在内的样本数;(2)记产品尺寸在内为等品,每件可获利6元;产品尺寸在内为不合格品,每件亏损3元;其余的为合格品,每件可获利4元.若该机器一个月共生产2000件产品.以样本的频率代替总体在各组的频率,若单月利润未能达到9000元,则需要对该工厂设备实施升级改造.试判断是否需要对该工厂设备实施升级改造.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】根据椭圆方程可得到a,从而求得长轴长.【详解】椭圆方程为,故,所以椭圆长轴长为,故选:D.2、答案:B【解析】直接利用平均变化率的公式求解.【详解】解:由题得.故选:B3、答案:A【解析】根据题意,设衰分比为,甲分到石,,然后可得和,解出、的值即可【详解】根据题意,设衰分比为,甲分到石,,又由今共有粮食石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得90石,甲、丙所得之和为164石,则,,解得:,,故选:A4、答案:B【解析】根据棱柱、棱台、球、正棱锥结构特征依次判断选项即可.【详解】棱柱的侧面都是平行四边形,A不正确;棱台是由对应的棱锥截得的,B正确;不是所有几何体的表面都能展开成平面图形,例如球不能展开成平面图形,C不正确;正棱锥的各条棱长并不是都相等,应该为正棱锥的侧棱长都相等,所以D不正确.故选