预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年云南省红河市高二数学第二学期期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、过坐标原点作直线的垂线,垂足为,则的取值范围是()A.B.C.D.2、如图,在长方体中,若,,则异面直线和所成角的余弦值为()A.B.C.D.3、已知圆与圆,则两圆的位置关系是()A.外切B.内切C.相交D.相离4、国际冬奥会和残奥会两个奥运会将于2022年在北京召开,这是我国在2008年成功举办夏季奥运会之后的又一奥运盛事.某电视台计划在奥运会期间某段时间连续播放5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且2个奥运宣传广告不能相邻播放,则不同的播放方式有()A.120种B.48种C.36种D.18种5、如图,P是椭圆第一象限上一点,A,B,C是椭圆与坐标轴的交点,O为坐标原点,过A作AN平行于直线BP交y轴于N,直线CP交x轴于M,直线BP交x轴于E.现有下列三个式子:①;②;③.其中为定值的所有编号是()A.①③B.②③C.①②D.①②③6、《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座楼阁到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取一个灯球,则这个灯球是大灯下缀4个小灯的概率为A.B.C.D.7、曲线与曲线()的()A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等8、如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A.B.C.D.9、已知两个向量,若,则的值为()A.B.C.2D.810、已知的二项展开式的各项系数和为32,则二项展开式中的系数为A5B.10C.20D.40二、填空题(本题共6小题,每题5分,共30分)11、已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为,则,若把它推广到空间长方体中,体对角线与平面,平面,平面所成的角分别为,则可以类比得到的结论为___________________.12、牛顿迭代法又称牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数集上近似求解方程根的一种方法.具体步骤如下:设r是函数y=f(x)的一个零点,任意选取x0作为r的初始近似值,作曲线y=f(x)在点(x0,f(x0))处的切线l1,设l1与x轴交点的横坐标为x1,并称x1为r的1次近似值;作曲线y=f(x)在点(x1,f(x1))处的切线l2,设l2与x轴交点的横坐标为x2,并称x2为r的2次近似值.一般的,作曲线y=f(x)在点(xn,f(xn))(n∈N)处的切线ln+1,记ln+1与x轴交点的横坐标为xn+1,并称xn+1为r的n+1次近似值.设f(x)=x3+x-1的零点为r,取x0=0,则r的2次近似值为________13、正方体,点分别是的中点,则异面直线与所成角的余弦值为___________.14、设函数,.若对任何,,恒成立,求的取值范围______.15、若直线过圆的圆心,则实数a的值为_________.16、如图,在棱长为1的正方体中,点M为线段上的动点,下列四个结论:①存在点M,使得直线AM与直线夹角为30°;②存在点M,使得与平面夹角的正弦值为;③存在点M,使得三棱锥体积为;④存在点M,使得,其中为二面角的大小,为直线与直线AB所成的角则上述结论正确的有______.(填上正确结论的序号)三、解答题(本题共5小题,每题12分,共60分)17、如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值18、在平面直角坐标系xOy中,椭圆C1:的左、右焦点分别为,且椭圆C1与抛物线C2:y2=2px(p>0)在第一象限的交点为Q,已知.(1)求的面积(2)求抛物线C2的标准方程.19、经观测,某种昆虫的产卵数y与温度x有关,现将收集到的温度和产卵数的10组观测数据作了初步处理,得到如下图的散点图及一些统计量表.275731.121.71502368.3630表中,(1)根据散点图判断,与哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据.试求y关于x回归方程.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.20、已知数列的前n项和为,且,,数列满足,.(1)求和的通项公式;(2)求数列{}的前n项和.21、已知点,(1)若过点P作的切线只有一条,求实数的值及切线方程;(2)过点P作斜率为1的直线l与相交于M,N两点,当面积最大时,求实数的值参考答案一、单选题(本题共10