预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年云南省红河市高二数学期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知点是椭圆上的一点,点,则的最小值为A.B.C.D.2、算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).如果拨动图1算盘中的两枚算珠,可以表示不同整数的个数为()A.8B.10C.15D.163、如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.B.C.D.4、在中,,,且BC边上的高为,则满足条件的的个数为()A.3B.2C.1D.05、以下命题是真命题的是()A.方差和标准差都是刻画样本数据分散程度的统计量B.若m为数据(i=1,2,3,····,2021)的中位数,则C.回归直线可能不经过样本点的中心D.若“”为假命题,则均为假命题6、若不等式在上有解,则的最小值是()A.0B.-2C.D.7、已知直线与直线垂直,则()A.B.C.D.38、在如图所示的茎叶图中,若甲组数据的众数为16,则乙组数据的平均数为()A.12B.10C.8D.69、抛物线的准线方程为()AB.C.D.10、已知四面体,所有棱长均为2,点E,F分别为棱AB,CD的中点,则()A.1B.2C.-1D.-2二、填空题(本题共6小题,每题5分,共30分)11、函数在区间上的最小值为__________.12、在△ABC中,,AB=3,,则________13、写出一个同时满足下列条件①②的圆C的一般方程______①圆心在第一象限;②圆C与圆相交的弦的方程为14、已知直线与圆相切,则__________.15、设函数,,若存在,成立,则实数的取值范围为__________.16、在空间直角坐标系中,经过且法向量的平面方程为,经过且方向向量的直线方程为阅读上面材料,并解决下列问题:给出平面的方程,经过点的直线的方程为,则直线l与平面所成角的余弦值为___________.三、解答题(本题共5小题,每题12分,共60分)17、已知抛物线上的点到其焦点F的距离为5.(1)求C的方程;(2)过点的直线l交C于A,B两点,且N为线段的中点,求直线l的方程.18、已知是公差不为0的等差数列,其前项和为,,且,,成等比数列.(1)求和;(2)若,数列的前项和为,且对任意的恒成立,求实数的取值范围.19、已知函数(1)填写函数的相关性质;定义域值域零点极值点单调性性质(2)通过(1)绘制出函数的图像,并讨论方程解的个数20、某中学共有名学生,其中高一年级有名学生,为了解学生的睡眠情况,用分层抽样的方法,在三个年级中抽取了名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生的人数及图中的值;(2)估计样本数据的中位数(保留两位小数);(3)估计全校睡眠时间超过个小时的学生人数.21、已知数列满足,.(1)求数列的通项公式;(2)记,其中表示不超过最大整数,如,.(i)求、、;(ii)求数列的前项的和.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】设,则,.所以当时,的最小值为.故选D.2、答案:A【解析】根据给定条件分类探求出拨动两枚算珠的结果计算得解.【详解】拨动图1算盘中的两枚算珠,有两类办法,由于拨动一枚算珠有梁上、梁下之分,则只在一个档拨动两枚算珠共有4种方法,在每一个档各拨动一枚算珠共有4种方法,由分类加法计数原理得共有8种方法,所以表示不同整数的个数为8.故选:A3、答案:D【解析】由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案【详解】由函数图象知,此三次函数在上处与直线相切,在点处与相切,下研究四个选项中函数在两点处的切线A:,将0代入,此时导数为,与点处切线斜率为矛盾,故A错误B:,将0代入,此时导数为,不为,故B错误;C:,将2代入,此时导数为,与点处切线斜率为3矛盾,故C错误;D:,将0,2代入,解得此时切线的斜率分别是,3,符合题意,故D正确;故选:D.4、答案:B【解析】利用等面积法求得,再利用正弦定理求得,利用内角和的关系及两角和差化积公式,二倍角公式转化为,再利用正弦函数的性质求满足条的的个数,即可求解.【详解】由三角形的面积公式知,即由正弦定理知所以,即,即,即利用两角和的正弦公式结合二倍角公式化简得又,则,,且由正弦函数的性质可知,满足的有2个,即满足条件的的个数为2.故选:B5、答案:A【解析】A:根据方差和标准差的定义进行判断;B:根据中位数的定