预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

§5.1平面对量的概念及线性运算一、选择题1.已知两个非零向量a,b满足|a+b|=|ab|,则下面结论正确的是()A.a∥bB.a⊥bC.{0,1,3}D.a+b=ab答案B2.对于非零向量a,b,“a+b=0”是“a∥b”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若a+b=0,则a=-b.∴a∥b;若a∥b,则a=λb,a+b=0不愿定成立.答案A3.设P是△ABC所在平面内的一点,eq\o(BC,\s\up6(→))+eq\o(BA,\s\up6(→))=2eq\o(BP,\s\up6(→)),则().A.eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))=0B.eq\o(PC,\s\up6(→))+eq\o(PA,\s\up6(→))=0C.eq\o(PB,\s\up6(→))+eq\o(PC,\s\up6(→))=0D.eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))+eq\o(PC,\s\up6(→))=0解析如图,依据向量加法的几何意义,eq\o(BC,\s\up6(→))+eq\o(BA,\s\up6(→))=2eq\o(BP,\s\up6(→))⇔P是AC的中点,∴eq\o(PA,\s\up6(→))+eq\o(PC,\s\up6(→))=0.答案B4.已知向量a=(x,2),b=(3,-1),若(a+b)∥(a-2b),则实数x的值为()A.-3B.2C.4D.-6解析由于(a+b)∥(a-2b),a+b=(x+3,1),a-2b=(x-6,4),∴4(x+3)-(x-6)=0,x=-6.答案D5.在四边形ABCD中,eq\o(AB,\s\up6(→))=a+2b,eq\o(BC,\s\up6(→))=-4a-b,eq\o(CD,\s\up6(→))=-5a-3b,则四边形ABCD的外形是().A.矩形B.平行四边形C.梯形D.以上都不对解析由已知eq\o(AD,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(CD,\s\up6(→))=-8a-2b=2(-4a-b)=2eq\o(BC,\s\up6(→)).∴eq\o(AD,\s\up6(→))∥eq\o(BC,\s\up6(→)),又eq\o(AB,\s\up6(→))与eq\o(CD,\s\up6(→))不平行,∴四边形ABCD是梯形.答案C6.已知△ABC和点M满足eq\o(MA,\s\up6(→))+eq\o(MB,\s\up6(→))+eq\o(MC,\s\up6(→))=0,若存在实数m,使得eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))=meq\o(AM,\s\up6(→))成立,则m=().A.2B.3C.4D.5解析∵eq\o(MA,\s\up6(→))+eq\o(MB,\s\up6(→))+eq\o(MC,\s\up6(→))=0,∴点M是△ABC的重心,∴eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))=3eq\o(AM,\s\up6(→)),∴m=3.答案B7.已知点O为△ABC外接圆的圆心,且++=0,则△ABC的内角A等于()A.30°B.60°C.90°D.120°解析:由++=0得+=,由O为△ABC外接圆的圆心,结合向量加法的几何意义知四边形OACB为菱形,且∠CAO=60°.答案:A二、填空题8.已知平面上不共线的四点O,A,B,C,若-3+2=0,则eq\f(||,||)=________.解析:由-3+2=0,得-=2(-),即=2,于是eq\f(||,||)=2.答案:29.给出下列命题:①向量eq\o(AB,\s\up6(→))的长度与向量eq\o(BA,\s\up6(→))的长度相等;②向量a与b平行,则a与b的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,确定是共线向量;⑤向量eq\o(AB,\s\up6(→))与向量eq\o(CD,\s\up6(→))是共线向量,则点A、B、C、D必在同一条直线上.其中不正确的个数为________.解析①中,∵向量eq\o(AB,\s\up6(→))与eq\o(BA,\s\up6(→))为相反向量,∴它们的长度相等,此命题正确.②中若a或b为