预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

实验三利用MATLAB进行时域分析一、实验目的(1)学会使用MATLAB编程绘制控制系统的单位阶跃响应曲线;(2)研究二阶控制系统中、对系统动态特性和时域指标的影响;n(3)掌握准确读取动态特性指标的方法;(4)分析二阶系统闭环极点和闭环零点对系统动态性能的影响;(5)研究三阶系统单位阶跃响应及其动态性能指标与其闭环极点的关系;(6)研究闭环极点和闭环零点对高阶系统动态性能的影响;(7)了解高阶系统中主导极点与偶极子的作用;(8)了解系统阶跃响应、脉冲响应和斜坡响应输出曲线之间的联系与差别。二、实验原理及内容1.求系统的特征根若已知系统的特征多项式D(s)利用roots()函数可以求其特征根。若已知系统的传递函数利用eig()函数可以直接求出系统的特征根。2、求系统的闭环根、和ωn函数damp()可以计算出系统的闭环根、和。n3、零极点分布图可利用pzmap()函数绘制连续系统的零、极点图从而分析系统的稳定性调用格式为:pzmap(numden)5、求阶跃响应的性能指标MATLAB提供了强大的绘图计算功能可以用多种方法求取系统的动态响应指标。首先介绍一种最简单的方法――游动鼠标法。对于例2在程序运行完毕后在曲线中空白区域单击鼠标右键在快捷菜单中选择”characteristics”包含:Peakresponse(峰值);settlingtime(调节时间);Risetime(上升时间);steadystate(稳态值);在相应位置出现相应点用鼠标单击后相应性能值就显示出来。用鼠标左键点击时域响应曲线任意一点系统会自动跳出一个小方框小方框显示了这一点的横坐标(时间)和纵坐标(幅值)。这种方法简单易用但同时应注意它不适用于用plot()命令画出的图形。100【自我实践1】若已知单位负反馈前向通道的传递函数为:试作出其单位G(s)2s5s阶跃响应曲线准确读出其动态性能指标并记录数据。解:上升时间:0.127响应动态性能峰值:1.44调节时间:1.41稳态值:1超调量:44.3%6、分析ω不变时改变阻尼比观察闭环极点的变化及其阶跃响应的变化。n【自我实践2】二阶系统ω=10当=00.250.50.7511.25时求对应系统的n闭环极点、自然振荡频率及阶跃响应曲线;并分析对系统性能的影响。解:num=100;i=2gridonforsigma=0:0.25:1.25holdoffden=[12*sigma*10100]title('²»Í¬×èÄá½×Ô¾ÏìÓ¦')damp(den)lab1='E=0';text(0.31.9lab1)sys=tf(numden);lab2='E=0.25';text(0.31.5lab2)i=i+1;lab3='E=0.5';text(0.31.2lab3)step(sys2)lab4='E=0.75';text(0.31.05lab4)holdonlab5='E=1';text(0.350.9lab5)lab6='E=1.25';text(0.350.8lab6)end过程阻尼越小超调越大振荡次数越多阶跃响应曲线:性能分析过阻尼系统的阶跃响应为非震荡过程瞬ωn不变时改变阻尼比时系统态特性为单调变化曲线无超调;当时系统欠阻尼阶跃响应为震荡调节时间越长;‘=1’时为临界阻尼状态推测曲线做发散震荡刚好不震荡;当时系统为零阻尼系统系统阶跃响应为等幅振荡。当7、保持=0.25不变分析ω变化时闭环极点对系统单位阶跃响应的影响。n【自我实践3】二阶系统=0.25当ω=103050时求系统的阶跃响应曲线;并分n析ω对系统性能的影响。n解:程序:sigma=0.25;i=0step(sys2)forwn=5:5:20;holdongridnum=wn^2den=[12*sigma*wnendwn^2]holdoffsys=tf(numden);title('wn±ä»¯Ê±½×Ô¾ÏìÓ¦')i=i+1;短调节时间时间越短上升时间越短超阶跃响应曲线:性能分析当阻尼不变时wn越大峰值时间越调不变。【综合实践】通过分别改变典型二阶系统的ξ和ω观察系统在脉冲、阶跃作用下的响应n特性求时域指标总结参数对系统性能影响的规律。脉ξωttσ%t响应曲线nspr0.278.