预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

28.2.2应用举例(1) 教学目标: 知识与技能: 1、使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决. 2、逐步培养学生分析问题、解决问题的能力. 3、渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识。 过程与方法: 1、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. 2、注意加强知识间的纵向联系. 情感态度与价值观: 渗透数形结合的数学思想,培养学生良好的学习习惯. 重难点、关键: 重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决. 难点:实际问题转化成数学模型 教学过程: 一、复习旧知、引入新课 【复习引入】 1、直角三角形中除直角外五个元素之间具有什么关系?请学生口答. 2、在中Rt△ABC中已知a=12,c=13求角B应该用哪个关系?请计算出来。 二、探索新知、分类应用 【活动一】例1:要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角α一般要满足,(如图).现有一个长6m的梯子,问: (1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m) (2)当梯子底端距离墙面2.4m时,梯子与地面所成的角α等于多少(精确到1o)这时人是否能够安全使用这个梯子。 引导学生先把实际问题转化成数学模型,然后分析提出的问题是数学模型中的什么量,在这个数学模型中可用学到的什么知识来求未知量? 几分钟后,让一个完成较好的同学示范。 【活动二】课本例3:2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体当在离地球表面343km的圆形轨道上运行.如图,当组合体运行到地球表面上P点的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与P点的距离是多少?(地球半径约为6400km,π取3.142,结果取整数)? 分析:从组合体上能直接看到的地球表面最远的点,应是视线与地球相切时的切点. 如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点.弧PQ的长就是地面上P,Q两点间的距离.为计算弧PQ的长需先求出。 【活动三】课本例4 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋离楼底部的俯角为60°,热气球与高楼的水平距离为120m.这栋高楼有多高(结果取整数)? 老师分析: 1、可以先把上面实际问题转化成数学模型,画出直角三角形。 2、在中,,.所以可以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC. 三、总结消化、整理笔记 本节课应掌握: 1、把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决. 2、归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决. 四、书写作业、巩固提高 (一)巩固练习:课本76页练习1、2 (二)提高、拓展练习:分层作业 五、教学后记