预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一次函数教材结构分析函数是数量化地表达变化与对应思想的数学工具,变化规律表现在变量(自变量与函数)之间的对应关系上,函数通过数或形定量地描述这种对应关系。变化与对应思想正是本章内容中蕴涵的基本思想。人的认识过程是波浪式前进、螺旋式上升的。学习数学中的一个重要的基本概念,需要分阶段地完成,逐步深化认识程度。本套教科书将对代数函数的学习分三章安排,即八年级上学期学习第十一章“一次函数”,八年级下学期学习第十七章“反比例函数”,九年级下学期学习第二十六章“二次函数”。在学习这些内容之前,分别安排了学习一次方程(组)、分式方程和一元二次方程,即按代数运算类型划分阶段,将函数作为方程的后续内容。本章是学习函数的第一阶段,其教学目标如前所述,重点在于初步认识函数概念,并具体讨论最简单的初等函数──次函数。本章教科书力求能在具体的数学内容中渗透体现变化与对应的思想,使学生能潜移默化地感触体会函数内容中最基本的东西,在对数学思想方法的学习方面有所收获。本章在学生对一元一次方程、二元一次方程组和一元一次不等式等以一次(线性)运算为基础的数学模型的已有认识上,从变化和对应的角度,对一次运算进行更深入的讨论。(一)从特殊到一般地认识一次函数人们认识事物往往经历“从特殊到一般”的过程,教科书对本章重点内容的安排正是按照这样的过程展现的。在对函数概念初步讨论后,教科书转入对一种具体的初等函数的讨论,第11.2节的标题“一次函数”点出了这一节的核心对象。这一节首先从讨论正比例函数开始,正比例函数是特殊的一次函数,即中的类型。对正比例函数的定义、图象和性质的讨论,可以为讨论一般的一次函数奠定基础。在分析具体问题时,教科书注意了引导学生利用事物之间的联系从特殊到一般地认识问题,例如讨论一次函数的图象时,教科书先对比函数和的区别,由直线的平移变换过渡到直线,然后再得出由两点确定直线的一般方法。采用这种处理方式能够展示解决问题的一种基本策略,即“先特殊化、简单化,再一般化、复杂化”的做法。(二)用函数观点回顾与审视相关内容,加强知识体系的构建在学习过程中,人们需要不断地提高认识问题的水平,这包括对过去已认识过的事物的再认识,也包括对新认识的事物与已认识的事物之间的联系的认识。这种认识水平的提高,是构建知识体系的过程中不可缺少的。本章最后的第12.3节“用函数观点看方程(组)与不等式”,从函数的角度对前面学习过的一元一次方程、一元一次不等式和二元一次方程组重新进行了分析,这种再认识不是原来水平上的回顾复习,而是站在更高的起点上的动态分析。用一次函数可以把上述三个不同的数学对象统一认识,由此可见函数的重要性。“水涨船高”,随着知识积累的增加,认识事物的水平也会相应提高。“站得高看得远”,通过学习本节内容,不仅可以加深对方程(组)与不等式等数学对象的理解,而且可以加大对已经学过的相关内容之间的联系的认识,加强知识间横纵向的融会贯通,提高灵活地分析解决问题的能力。这也从一个侧面反映了函数概念的作用。(三)注重联系实际问题,体现数学建模的作用世界是运动变化的,函数是研究运动变化的重要数学模型,它来源于客观实际又服务于客观实际。本章教科书中实际问题贯穿于始终,它们中有些是作为函数的实际背景,为降低学习抽象概念的难度服务的。例如,在引入函数概念时,教科书通过对一系列实际问题中变量间关系的分析与描述,归纳出一般性的规律要点,得出函数的定义。这样的过程是由具体到抽象,由特殊到一般的过程,是以实际问题抽象为数学模型为线索的展现过程。有些实际问题是作为应用举例体现函数的广泛的应用性,为培养应用数学解决实际问题的意识和能力服务的。例如,第11.2节中的例6就是这样的问题,它是一个选择最优方案的实际问题,可以归为线性规划的初级问题。要解决这个问题,需要先确定影响总运费的最关键的变量,再列出表示总运费的函数解析式,然后分析这个解析式或相应的图象,找出总运费的最小值。分析和解决这个问题的过程,对体现数学建模的作用具有比较典型的意义