预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017年黑龙江省大庆实验中学高考数学模拟试卷(理科)(4)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,复数z满足z(1+i)=i,则复数z所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知U={x|y=},M={y|y=2x,x≥1},则∁UM=()A.[1,2)B.(0,+∞)C.[2,+∞)D.(0,1]3.“∃x>0,使a+x<b”是“a<b”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知sin()=,则cos(2)=()A.﹣B.﹣C.D.5.执行如图所示的程序框图,则输出的结果S=()A.B.C.D.6.在区间(0,1)上随机取两个实数m,n,则关于x的一元二次方程x2﹣2x+2n=0有实数根的概率为()A.B.C.D.7.等差数列{an}的前n项和为Sn,若=,则下列结论中正确的是()A.=2B.=C.=D.=8.如图的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为()A.B.C.D.9.某几何体的三视图如图所示,则该几何体的体积是()A.3B.4C.5D.610.已知不等式组,所表示的平面区域为D,若直线y=ax﹣2与平面区域D有公共点,则实数a的取值范围为()A.[﹣2,2]B.(﹣∞,﹣]∪[,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣,]11.给出下列四个结论:①已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤2)=0.6,则P(ξ>2)=0.2;②若命题P:∃x0∈[1,+∞),x﹣x0﹣1<0,则¬p:∀x∈(﹣∞,1),x2﹣x﹣1≥0;③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=﹣3;④设回归直线方程为=2﹣2.5x,当变量x增加一个单位时,y平均增加2个单位.其中正确结论的个数为()A.1B.2C.3D.412.已知函数f(x)=|lnx|﹣1,g(x)=﹣x2+2x+3,用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题.每小题5分,共20分.13.已知,若,则等于.14.(2x+﹣4)9的展开式中,不含x的各项系数之和为.15.过抛物线y2=4x焦点的直线交抛物线于A、B两点,若|AB|=10,则AB的中点P到y轴的距离等于.16.如图,棱长为3的正方体的顶点A在平面α上,三条棱AB,AC,AD都在平面α的同侧,若顶点B,C到平面α的距离分别为1,,则顶点D到平面α的距离是.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.设△ABC的三个内角A,B,C所对的边分别为a,b,c,点O为△ABC的外接圆的圆心,若满足a+b≥2c.(1)求角C的最大值;(2)当角C取最大值时,己知a=b=,点P为△ABC外接圆圆弧上﹣点,若,求x•y的最大值.18.骨质疏松症被称为“静悄悄的流行病“,早期的骨质疏松症患者大多数无明显的症状,针对中学校园的学生在运动中骨折事故频发的现状,教师认为和学生喜欢喝碳酸饮料有关,为了验证猜想,学校组织了一个由学生构成的兴趣小组,联合医院检验科,从高一年级中按分层抽样的方法抽取50名同学(常喝碳酸饮料的同学30,不常喝碳酸饮料的同学20),对这50名同学进行骨质检测,检测情况如表:(单位:人)有骨质疏松症状无骨质疏松症状总计常喝碳酸饮料的同学22830不常喝碳酸饮料的同学81220总计302050(1)能否据此判断有97.5%的把握认为骨质疏松症与喝碳酸饮料有关?(2)现从常喝碳酸饮料且无骨质疏松症状的8名同学中任意抽取两人,对他们今后是否有骨质疏松症状情况进行全程跟踪研究,记甲、乙两同学被抽到的人数为X,求X的分布列及数学期望E(X).附表及公式.P(k2≥k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828k2=.19.如图,正三棱柱ABC﹣A1B1C1中,D,E,M分别是线段BC,CC1,AB的中点,AA1=2AB=4.(1)求证:DE∥平面A1MC;(2)在线段AA1上是否存在一点P,使得二面角A1﹣BC﹣P的余弦值为?若存在,求出AP的长;若不存在,请说明理由.20.已知椭圆E:中,a=b,且椭圆E上任一点到点的最小距离为.(1)求椭圆E的标准方程;(2)如图4,过点Q(1,1)作两条倾斜角互补的直线l1,l2(l1,l2不重合)分别交椭圆E于点A,C,B,D,求证:|QA|•|QC|=|QB|•|Q