预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

四川省宜宾市第四中学2020届高三数学一诊模拟试题理第I卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.)1.设集合,,则A.B.C.D.2.设复数满足,则A.B.C.D.3.“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.在中,,,,则等于A.B.C.D.25.若某空间几何体的三视图如图所示,则该几何体的体积是A.2B.1C.D.6.若椭圆经过点,则椭圆的离心率=A.B.C.D.7.设数列满足,则A.B.C.D.8.有红色、黄色小球各两个,蓝色小球一个,所有小球彼此不同,现将五球排成一行,颜色相同者不相邻,不同的排法共有()种A.48B.72C.78D.849.如果是抛物线上的点,它们的横坐标,是抛物线的焦点,若,则A.2028B.2038C.4046D.405610.已知是定义在上的奇函数,且在上是减函数,,则满足的实数的取值范围是A.B.C.D.11.一个圆锥的高和底面直径相等,且这个圆锥和圆柱的底面半径及体积也都相等,则圆锥和圆柱的侧面积的比值为A.B.C.D.12.已知函数是奇函数,,且与的图像的交点为,,,,则A.0B.6C.12D.18第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,满分20分)13.双曲线的渐近线方程为_____________14.的二项展开式中,含的一次项的系数为__________.(用数字作答)15.设,,则的最小值为______.16.在平面直角坐标系中,定义为两点,之间的“折线距离”.在这个定义下,给出下列命题:①到原点的“折线距离”等于1的点的集合是一个正方形;②到原点的“折线距离”等于1的点的集合是一个圆;③到两点的“折线距离”之和为4的点的集合是面积为6的六边形;④到两点的“折线距离”差的绝对值为1的点的集合是两条平行线.其中正确的命题是___________.(写出所有正确命题的序号)三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.)17.(本大题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求角A的大小;(2)若cos(B+)=,求cosC的值.18.某市教育部门为了解全市高三学生的身高发育情况,从本市全体高三学生中随机抽取了100人的身高数据进行统计分析.经数据处理后,得到了如下图1所示的频事分布直方图,并发现这100名学生中,身高不低于1.69米的学生只有16名,其身高茎叶图如下图2所示,用样本的身高频率估计该市高一学生的身高概率.(1)求该市高三学生身高高于1.70米的概率,并求图1中、、的值.(2)若从该市高三学生中随机选取3名学生,记为身高在的学生人数,求的分布列和数学期望;(3)若变量满足且,则称变量满足近似于正态分布的概率分布.如果该市高三学生的身高满足近似于正态分布的概率分布,则认为该市高三学生的身高发育总体是正常的.试判断该市高三学生的身高发育总体是否正常,并说明理由.19.(12分)如图,已知直角梯形所在的平面垂直于平面(1)的中点为,求证∥面(2)求平面与平面所成的锐二面角的余弦值20.(12分)已知椭圆的左、右焦点分别是,是其左右顶点,点是椭圆上任一点,且的周长为6,若面积的最大值为.(1)求椭圆的方程;(2)若过点且斜率不为0的直线交椭圆于两个不同点,证明:直线于的交点在一条定直线上.21.(12分)已知函数.(1)求函数的单调区间.(2)若斜率为k的直线与曲线交于,两点,其中,求证:.(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C的参数方程是为参数,直线l的参数方程是为参数,与C相交于点A、以直角坐标系xOy的原点O为极点,以x轴正半轴为极轴建立极坐标系.(1)求曲线C的普通方程和极坐标方程;(2)若,求.23.(10分)已知函数,(1)当时,解不等式;(2)若存在满足,求实数的取值范围.四川省宜宾市第四中学高2020届一诊模拟考试理科数学试题参考答案1.A2.D3.B4.C5.B6.D7.D8.A9.B10.C11.C12.D13.14.-515.16.①③④17.(1)由正弦定理可得:.所以,整理得:又.解得:所以或(舍去)所以(2),,18.:(1)由图2可知,100名样本学生中身高高于1.70米共有15名,以样本的频率估计总体的概率,可得这批学生的身高高于1.70的概率为0.15.记为学生的身高,结合图1可得:,,,