预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

课时达标检测(十四)直线与平面、平面与平面垂直的性质一、选择题1.若l,m,n表示不重合的直线,α表示平面,则下列说法中正确的个数为()①l∥m,m∥n,l⊥α⇒n⊥α;②l∥m,m⊥α,n⊥α⇒l∥n;③m⊥α,n⊂α⇒m⊥n.A.1B.2C.3D.0答案:C2.如果直线a与平面α不垂直,那么平面α内与直线a垂直的直线有()A.0条B.1条C.无数条D.任意条答案:C3.(浙江高考)设l是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β答案:B4.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β答案:D5.如图,线段AB的两端在直二面角α­l­β的两个面内,并与这两个面都成30°角,则异面直线AB与l所成的角是()A.30°B.45°C.60°D.75°答案:B二、填空题6.如图,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,垂足为B,直线a⊂β,a⊥AB,则直线a与直线l的位置关系是________.答案:平行7.如图,四面体P­ABC中,PA=PB=eq\r(13),平面PAB⊥平面ABC,∠ABC=90°,AC=8,BC=6,则PC=________.答案:78.如图,已知六棱锥P­ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有______(把所有正确的序号都填上).答案:①④三、解答题9.如图,三棱锥P­ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△PAC是直角三角形,∠PAC=90°,平面PAC⊥平面ABC.求证:平面PAB⊥平面PBC.证明:∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PA⊥AC,∴PA⊥平面ABC.又BC⊂平面ABC,∴PA⊥BC.又∵AB⊥BC,AB∩PA=A,AB⊂平面PAB,PA⊂平面PAB,∴BC⊥平面PAB.又BC⊂平面PBC,∴平面PAB⊥平面PBC.10.如图,在四棱锥P­ABCD中,底面ABCD是边长为a的正方形,E,F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=eq\f(\r(2),2)AD.(1)求证:EF∥平面PAD;(2)求三棱锥C­PBD的体积.解:(1)证明:连接AC,如图所示,则F是AC的中点,又E为PC的中点,∴EF∥PA.又∵PA⊂平面PAD,EF⊄平面PAD,∴EF∥平面PAD.(2)取AD的中点N,连接PN,如图所示.∵PA=PD,∴PN⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊂平面PAD,∴PN⊥平面ABCD,即PN是三棱锥P­BCD的高.又∵PA=PD=eq\f(\r(2),2)AD=eq\f(\r(2),2)a,∴PN=eq\f(1,2)AD=eq\f(1,2)a,∴VC­PBD=VP­BCD=eq\f(1,3)S△BCD·PN=eq\f(1,3)·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)a·a))·eq\f(1,2)a=eq\f(a3,12).