高中数学 第三章 空间向量与立体几何 3.2.1 直线的方向向量与直线的向量方程学案 新人教B版选修2-1-新人教B版高二选修2-1数学学案.doc
莉娜****ua
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
高中数学 第三章 空间向量与立体几何 3.2.1 直线的方向向量与直线的向量方程学案 新人教B版选修2-1-新人教B版高二选修2-1数学学案.doc
3.2.1直线的方向向量与直线的向量方程学习目标1.理解直线的方向向量了解直线的向量方程.2.会用向量方法证明线线、线面、面面的平行.3.会用向量证明两条直线垂直.4.会利用向量求两条直线所成的角.知识点一用向量表示直线或点在直线上的位置思考在平面中可以用向量确定平面上一点的位置或点的集合.空间中一点的位置或点的集合怎样确定?梳理用向量表示直线或点在直线上的位置(1)在直线l上给定一个定点A和它的一个方向向量a对于直线l上的任意一点P则有eq\o(AP\s\up6(→))=_______
高中数学 第3章 空间向量与立体几何 3.2.1 直线的方向向量与直线的向量方程学案 新人教B版选修2-1-新人教B版高二选修2-1数学学案.doc
PAGE-9-3.2.1直线的方向向量与直线的向量方程学习目标核心素养1.理解直线的方向向量,了解直线的向量方程.(重点)2.会用向量方法证明线线、线面、面面平行.(难点、易混点)3.会用向量证明两条直线垂直,求两条直线所成的角.(难点)1.通过学习直线的方向向量及方向方程等概念,培养学生的数学抽象素养.2.利用向量法证明两直线垂直,求两直线所成的角,提升学生的逻辑推理素养.1.用向量表示直线或点在直线上的位置(1)在直线l上给定一个定点A和它的一个方向向量a,对于直线l上的任意一点P,则有eq\
高中数学 第3章 空间向量与立体几何 3.2.1 直线的方向向量与直线的向量方程学案 新人教B版选修2-1-新人教B版高二选修2-1数学学案.doc
-9-3.2.1直线的方向向量与直线的向量方程学习目标核心素养1.理解直线的方向向量了解直线的向量方程.(重点)2.会用向量方法证明线线、线面、面面平行.(难点、易混点)3.会用向量证明两条直线垂直求两条直线所成的角.(难点)1.通过学习直线的方向向量及方向方程等概念培养学生的数学抽象素养.2.利用向量法证明两直线垂直求两直线所成的角提升学生的逻辑推理素养.1.用向量表示直线或点在直线上的位置(1)在直线l上给定一个定点A和它的一个方向向量a对于直线l上的任意一点P则有eq\o(AP
高中数学 第3章 空间向量与立体几何 3.2 空间向量在立体几何中的应用 3.2.1 直线的方向向量与直线的向量方程学案 新人教B版选修2-1-新人教B版高二选修2-1数学学案.doc
3.2.1直线的方向向量与直线的向量方程1.了解直线的方向向量的意义.2.会求直线的向量方程.3.掌握用向量的方法证明平行、垂直等问题.1.用向量表示直线或点在直线上的位置(1)直线的方向向量与直线平行或共线的非零向量,叫做此直线的方向向量.(2)空间直线的向量参数方程点A为直线l上的定点,a为直线l的一个方向向量,点P为直线l上任一点,t为一个任意实数.以上三种形式都叫做空间直线的向量参数方程.(3)线段中点的向量表示式设点M是线段AB的中点,则eq\o(OM,\s\up6(→))=eq\f(1
高中数学 第三章 空间向量与立体几何 3.2 空间向量在立体几何中的应用 3.2.1 直线的方向向量与直线的向量方程课堂导学案 新人教B版选修2-1-新人教B版高二选修2-1数学学案.doc
53.2.1直线的方向向量与直线的向量方程课堂导学三点剖析一、直线的方向向量【例1】已知点A(130)B(243)以的方向为正向建立数轴试求点P使得∶=1∶3.思路分析:求点P不妨先设P(xyz)再利用条件构造等式.解:设P(xyz)由已知=3∴=3()∴4=+3=+∴(xyz)=(243)+(130)=().∴x=y=z=即点P().温馨提示求一点坐标通常先设出点再寻找条件等式或构造方程组求解.二、平行与垂直【例2】已知三棱锥O—ABC中OA=OB=1OC=2OAOBOC两两垂直如何找出