预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1.3函数的基本性质画出下列函数的图象,观察其变化规律:1.在区间_______上,f(x)的值随着x的增大而_____.2.在区间_______上,f(x)的值随着x的增大而_____.一、函数单调性定义例1.下图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每个区间上,它是增函数还是减函数?例2.证明:函数在上是增函数.三、判断函数单调性的方法步骤四、归纳小结1.函数的最大值(1)设函数y=f(x)的定义域为I,如果存在实数M满足:①对于,都有f(x)≤M,②存在,使f(x0)=M.那么称M是函数y=f(x)的最大值.2.函数的最小值(1)设函数y=f(x)的定义域为I,如果存在实数M满足:①对于,都有f(x)≥M,②存在,使f(x0)=M.(1)那么称M是函数y=f(x)的最小值.1.函数最大值、最小值的几何意义是什么?【提示】函数最大值或最小值是函数的整体性质,从图象上看,函数的最大值或最小值是图象最高点或最低点的纵坐标.2.求函数的最大(小)值应注意的问题是什么?【提示】(1)对于任意的x属于给定区间,都有f(x)≤M成立,“任意”是说对给定区间的每一个值都必须满足不等式.(2)最大值M必须是一个函数值,即它是值域中的一个元素.例如函数f(x)=-x2对任意的x∈R,都有f(x)≤1,但f(x)的最大值不是1,因为1不属于f(x)的值域.如图为函数y=f(x),x∈[-3,8]的图象,指出它的最大值、最小值及单调区间.【思路点拨】由题目可获取以下主要信息:①所给函数解析式未知;②函数图象已知.解答本题可根据函数最值定义和最值的几何意义求解.【解析】观察函数图象可以知道,图象上位置最高的点是(2,3),最低的点是(-1,-3),所以函数y=f(x)当x=2时,取得最大值,最大值是3,当x=-1.5时,取得最小值,最小值是-3.函数的单调增区间为[-1,2],[5,7].单调减区间为[-3,-1],[2,5],[7,8].由函数图象找出函数的单调区间是求函数单调区间和最值的常用方法.这种方法以函数最值的几何意义为依据,对较为简单且图象易作出的函数求最值较常用.(1)运用函数单调性求最值是求函数最值的重要方法,特别是当函数图象不好作或作不出来时,单调性几乎成为首选方法.(2)函数的最值与单调性的关系①若函数在闭区间[a,b]上是减函数,则f(x)在[a,b]上的最大值为f(a),最小值为f(b);②若函数在闭区间[a,b]上是增函数,则f(x)在[a,b]上的最大值为f(b),最小值为f(a).