

一种基于深度学习的三维点云语义分割方法.pdf
努力****承悦
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一种基于深度学习的三维点云语义分割方法.pdf
本发明公开了一种基于深度学习的三维点云语义分割方法,包括以下步骤:步骤1、根据先验信息对倾斜摄影软件获取的场景数字正射影像进行初步分类;步骤2、对点云数据进行预处理并进行点云样本的制作;步骤3、点云数据完成预处理与目标分割后,赋予相应的属性,并完成样本集的封装;步骤4、将样本集送入语义分割的神经网络中提取点云的特征,完成模型训练;步骤5、模型训练之后,进行测试,并对测试结果进行可视化,对可视化结果进一步分析,借此,本发明能够直接处理无序点云,并可以提取到点云不同尺度的局部特征,具有可以提高对精细场景的识别
基于深度学习的点云语义分割综述.pptx
,目录PartOnePartTwo点云语义分割的定义深度学习在点云处理中的应用研究目的和意义PartThree点云的基本概念语义分割的原理深度学习在点云语义分割中的发展历程PartFour基于Voxel的分割方法基于Point的分割方法基于Graph的分割方法基于学习的分割方法PartFive评估指标数据集介绍数据集处理和标注PartSix面临的挑战未来发展方向展望PartSeven研究成果总结对未来研究的建议THANKS
一种基于点云数据自动增强的三维点云语义分割方法.pdf
本发明公开了一种基于点云数据自动增强的三维点云语义分割方法。该发明可以进一步增强以PointNet++为代表的点云语义分割算法在不同应用场景下的泛化性能。以往点云语义分割算法通常存在两个问题:一是利用传统的数据增强方法;二是将数据增强与网络训练分为两个阶段。本发明提出的基于点云数据自动增强的三维点云语义分割方法,通过考虑样本的基本几何结构,为每个输入样本回归一个特定的增强函数,同时学习点云样本的形状变换和逐点位移,并联合优化增强函数和优化器,解决网络中输入样本多样性不足的问题,增强网络的泛化能力。
一种基于主动学习和半监督的三维点云语义分割标注方法.pdf
本发明公开了一种基于主动学习和半监督的三维点云语义分割标注方法,该方法首先利用构造的点云匹配评分函数,挑选出一个具有代表性的子集。然后利用两种无监督算法,将一帧点云分割成若干个小的区域。在每次主动学习循环中,先计算每个小区域的点云强度信息值和信息熵,再从中选出二者和值中较大的若干个区域进行人工标记。为了有效利用未标注数据,借助无监督学习方法,选择相对当前模型而言置信度较高小区域赋以伪标签。最后将伪标签数据和人工标记数据一起输入给深度语义分割模型进行网络训练。由此能够极大地提升标注效率,减少人工标注成本。
一种三维点云语义分割的系统及方法.pdf
本发明公开一种三维点云语义分割的系统及方法,包括独立特征提取模块、预处理模块、分组模块、领域特征提取模块和特征融合模块;所述独立特征提取模块提取点云的全局特征,所述预处理模块先通过最远点采样法得到点云集的中心点,再依据中心点选取固定半径内的点云;所述分组模块负责将预处理得到的点云集根据膨胀系数重新建立点云集;所述领域特征提取模块用来提取点云的特征,所述特征融合模块用来将各个通道提取到的特征和全局特征进行融合。本发明采用轻量级网络来提取点云的全局特征,构建了一个分组模块来大大减少点云图结构的节点数,缩短了训