一种基于卷积神经网络的BERT模型的微调方法及系统.pdf
音景****ka
亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于卷积神经网络的BERT模型的微调方法及系统.pdf
本发明公开了一种基于卷积神经网络的BERT模型的微调方法及系统,包括识别文本获取模块、文本识别模块、分词处理模块、词性词语模块、词语筛选模块、微调模块、词性向量模块、语句词性向量构建模块与电子设备模块,所述识别文本获取模块连接文本识别模块的位置,所述文本识别模块连接分词处理模块的位置,所述分词处理模块连接词性词语模块的位置,所述词性词语模块连接词语筛选模块的位置,所述词语筛选模块连接微调模块的位置,所述微调模块连接语句词性向量构建模块的位置。本发明所述的一种基于卷积神经网络的BERT模型的微调方法及系统,
一种基于模型微调的卷积神经网络通道剪枝方法.pdf
本发明涉及一种基于模型微调的卷积神经网络通道剪枝方法及系统,该方法包括:构造卷积神经网络分类模型,该模型由特征提取器和分类器两部分构成,特征提取器包括卷积层以及池化层,在ImageNet图像分类数据集上进行训练,得到预训练模型C;修改所述预训练模型C的分类器,将分类器全连接层输出的类别数设置为目标类别,并在目标数据集上进行稀疏性训练,得到收敛后的模型C′;将所述稀疏训练后的模型C′根据通道剪枝策略进行剪枝,得到剪枝后的模型C″;将所述剪枝后的模型C″在目标数据集上进行微调,以提高剪枝后模型的性能。本发明提
基于卷积神经网络和Bert的雷达目标识别方法.pdf
本发明公开了一种基于卷积神经网络和Bert的雷达目标识别方法,包括以下步骤:S1,收集数据并划分训练集和测试集,对数据进行强度归一化和重心对齐处理;S2,将上述处理的HRRP样本输入到CNN模块,用CNN对处理后的样本进行提取特征;S3,用Bert处理CNN提取的有效特征,提取更加深层的特征;S4,搭建分类器,对HRRP目标分类,对Bert的输出,再次使用注意力机制,将更有效的特征进行保留,最后采用softmax对网络的输出进行分类;S5,将经过S1处理后的HRRP测试集送入S2、S3、S4步骤中已训练完
一种基于卷积神经网络的模型稀疏方法.pdf
本申请提供一种基于卷积神经网络的模型稀疏方法。解决了提高稀疏模型精度的技术问题。模型稀疏方法包括:根据预训练模型的稀疏需求,设定稀疏比例s<base:Sub>l</base:Sub>;根据所述s<base:Sub>l</base:Sub>,稀疏所述预训练模型中每层的参数W<base:Sub>l</base:Sub>,得到稀疏模型;计算第一中间结果和第二中间结果的误差损失;其中,所述第一中间结果为所述预训练模型第1层的中间结果;所述第二中间结果为所述稀疏模型中第1层的中间结果;根据预设权重,对所述误差损失加
基于卷积神经网络的三维模型分类方法及系统.pdf
本发明公开了一种基于卷积神经网络的三维模型分类方法及系统,包括以下步骤:获取待分类的三维模型,对三维模型多角度投影得到视图,作为构建的卷积神经网络的输入,训练卷积神经网络,经过网络层次地提取三维模型形状特征,得到三维模型的分类结果,本发明避免了模型数据转化等操作,有效提高三维模型分类效率,推动计算机视觉和计算机辅助设计研究的发展。