一种基于模型微调的卷积神经网络通道剪枝方法.pdf
一条****贺6
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一种基于模型微调的卷积神经网络通道剪枝方法.pdf
本发明涉及一种基于模型微调的卷积神经网络通道剪枝方法及系统,该方法包括:构造卷积神经网络分类模型,该模型由特征提取器和分类器两部分构成,特征提取器包括卷积层以及池化层,在ImageNet图像分类数据集上进行训练,得到预训练模型C;修改所述预训练模型C的分类器,将分类器全连接层输出的类别数设置为目标类别,并在目标数据集上进行稀疏性训练,得到收敛后的模型C′;将所述稀疏训练后的模型C′根据通道剪枝策略进行剪枝,得到剪枝后的模型C″;将所述剪枝后的模型C″在目标数据集上进行微调,以提高剪枝后模型的性能。本发明提
一种基于卷积神经网络的BERT模型的微调方法及系统.pdf
本发明公开了一种基于卷积神经网络的BERT模型的微调方法及系统,包括识别文本获取模块、文本识别模块、分词处理模块、词性词语模块、词语筛选模块、微调模块、词性向量模块、语句词性向量构建模块与电子设备模块,所述识别文本获取模块连接文本识别模块的位置,所述文本识别模块连接分词处理模块的位置,所述分词处理模块连接词性词语模块的位置,所述词性词语模块连接词语筛选模块的位置,所述词语筛选模块连接微调模块的位置,所述微调模块连接语句词性向量构建模块的位置。本发明所述的一种基于卷积神经网络的BERT模型的微调方法及系统,
基于通道剪枝和量化的卷积神经网络压缩方法.pptx
汇报人:CONTENTSPARTONEPARTTWO通道剪枝的定义通道剪枝的原理通道剪枝的方法通道剪枝的效果PARTTHREE量化定义量化原理量化方法量化效果PARTFOUR卷积神经网络压缩的定义卷积神经网络压缩的原理卷积神经网络压缩的方法卷积神经网络压缩的效果PARTFIVE方法概述通道剪枝和量化的结合方式方法实现流程方法效果评估汇报人:
基于卷积核剪枝的卷积神经网络模型压缩方法研究及实现.docx
基于卷积核剪枝的卷积神经网络模型压缩方法研究及实现基于卷积核剪枝的卷积神经网络模型压缩方法研究及实现摘要:随着深度学习的快速发展,卷积神经网络(ConvolutionalNeuralNetworks,CNNs)已成为计算机视觉领域中最为重要的模型。然而,CNNs往往具有较高的参数量和计算复杂度,因此需要在保持模型精度的同时,实现模型的压缩和加速。本文针对这一问题,提出了一种基于卷积核剪枝的卷积神经网络模型压缩方法。1引言深度学习在计算机视觉领域取得了巨大的成功,卷积神经网络一直以其较强的性能和泛化能力受到
基于卷积核剪枝的卷积神经网络模型压缩方法研究及实现的开题报告.docx
基于卷积核剪枝的卷积神经网络模型压缩方法研究及实现的开题报告一、选题背景深度学习技术在图像分类、目标检测、自然语言处理等领域都取得了显著的成果,其中卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种广泛应用的深度学习模型。但是,CNN模型存在一些问题,其中之一就是参数量巨大,模型结构过于复杂,造成了巨大的计算负担和存储开销,限制了模型的应用范围。因此,对于CNN模型的压缩和优化以提高其运行效率成为了研究的热点之一。卷积核剪枝(ConvolutionalKernelPruni