

基于卷积神经网络和Bert的雷达目标识别方法.pdf
雨星****萌娃
亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于卷积神经网络和Bert的雷达目标识别方法.pdf
本发明公开了一种基于卷积神经网络和Bert的雷达目标识别方法,包括以下步骤:S1,收集数据并划分训练集和测试集,对数据进行强度归一化和重心对齐处理;S2,将上述处理的HRRP样本输入到CNN模块,用CNN对处理后的样本进行提取特征;S3,用Bert处理CNN提取的有效特征,提取更加深层的特征;S4,搭建分类器,对HRRP目标分类,对Bert的输出,再次使用注意力机制,将更有效的特征进行保留,最后采用softmax对网络的输出进行分类;S5,将经过S1处理后的HRRP测试集送入S2、S3、S4步骤中已训练完
基于Bert的雷达目标识别方法.pdf
本发明公开了一种基于Bert的雷达目标识别方法,包括以下步骤:S1,收集数据并划分训练集和测试集,通过雷达采集的HRRP数据,需要对每个类别进行采样,分别选出训练集和测试集,之后进行合并,保证每个类别的数据形式都有被采样到;S2,对HRRP数据进行幂次变换,并使用注意力机制;S3,用Bert模型处理幂次变换的输出,提取更加深层的特征;S4,搭建分类器,对HRRP目标分类,对Bert模型的输出,再次使用注意力机制的思想,将更有效的特征进行保留,最后采用softmax对网络的输出进行分类;S5,将经过S1处理
基于卷积神经网络的雷达目标HRRP分类识别方法.pptx
,CONTENTS01.02.卷积神经网络的结构卷积神经网络的学习过程卷积神经网络的优势03.HRRP图像的采集HRRP图像的预处理流程预处理过程中的关键技术04.卷积神经网络在图像分类中的应用构建基于卷积神经网络的HRRP图像分类器训练和优化网络模型05.实验数据集介绍实验结果展示结果分析与其他方法的比较06.本研究的主要贡献存在的不足与局限性未来研究方向感谢您的观看!
基于多尺度卷积神经网络的雷达HRRP目标识别方法.pdf
本发明公开了一种基于多尺度卷积神经网络的雷达HRRP目标识别方法,该方法首先进行预处理降低HRRP样本中的敏感性,然后后接的多尺度卷积神经网络可在保留HRRP样本内所蕴含的序列相关性同时,提取出HRRP包络中所含的信息,最后采用基于RNN的深度学习方法进行目标识别:该方法基于序列相关性进行建模,对物理结构特征进行建模描述,最后通过softmax进行分类识别。
基于卷积神经网络融合特征的雷达目标识别方法及系统.pdf
本发明提供了基于卷积神经网络融合特征的雷达目标识别方法及系统,采用神经网络同时提取多普勒谱分布和时频谱分布的微多普勒特征,并利用特征构造融合特征,实现高性能的雷达目标识别。本发明采用深度卷积神经网络模型,分别提取多普勒谱空间的分布特征和时频谱空间的分布特征,同时利用不同空间上的深层抽象特征构成融合特征矢量,利用融合特征矢量实现两类特征的信息互补,以增强雷达目标的识别性能,提高识别准确率,得到特征对应的目标识别类型。