预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017年湖北省新联考高考数学四模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A={x|y=},B={x|x2﹣x>0},则A∩B=()A.{x|x≥0}B.{x|0<x<1}C.{x|x>1}D.{x|x<0或x>1}2.设复数z满足z(1+i)=i(i为虚数单位),则|z|=()A.B.C.1D.3.在[﹣1,2]内任取一个数a,则点(1,a)位于x轴下方的概率为()A.B.C.D.4.若x>2m2﹣3是﹣1<x<4的必要不充分条件,则实数m的取值范围是()A.[﹣3,3]B.(﹣∞,﹣3]∪[3,+∞)C.(﹣∞,﹣1]∪[1,+∞)D.[﹣1,1]5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.6.已知直线l过双曲线Γ:=1(a>0,b>0)的一个焦点且与Γ的一条渐近线平行,若l在y轴上的截距为a,则双曲线的离心率为()A.B.2C.D.27.已知定义[x]表示不超过的最大整数,如[2]=2,[2,2]=2,执行如图所示的程序框图,则输出S=()A.1991B.2000C.2007D.20088.若tanα=,则sin4α﹣cos4α+6sincoscosα=()A.1B.C.D.9.如图所示,单位位圆上的两个向量相互垂直,若向量满足()()=0,则||的取值范围是()A.[0,1]B.[0,]C.[1,]D.[1,2]10.直线y=kx﹣4,k>0与抛物线y2=2x交于A,B两点,与抛物线的准线交于点C,若AB=2BC,则k=()A.B.C.2D.11.已知函数f(x)=cos(2x+φ),且f(x)dx=0,则下列说法正确的是()A.f(x)的一条对称轴为x=B.存在φ使得f(x)在区间[﹣,]上单调递减C.f(x)的一个对称中心为(,0)D.存在φ使得f(x)在区间[,]上单调递增12.设定义在R上的可导函数f(x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>ln(x+1),则不等式(x﹣2017)3f(x﹣2017)﹣27>0的解集为()A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.(1+x)2017的展开式中,x2017的系数为.(用数字作答)14.已知点(x,y)满足约束条件,则的取值范围为.15.已知函数f(x)=,若f(a)=f(b)(0<a<b),则当取得最小值时,f(a+b)=.16.在△ABC中,角A,B,C的对边分别为a,b,c,且=,则cosC﹣2sinB的最小值为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知等差数列{an}满足an>1,其前n项和Sn满足6Sn=an2+3an+2(1)求数列{an}的通项公式及前n项和Sn;(2)设数列{bn}满足bn=,且其前n项和为Tn,证明:≤Tn<.18.如图1,四边形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,过点C作CO⊥AB,垂足为O,将△OBC沿CO折起,如图2使得平面CBO与平面AOCD所成的二面角的大小为θ(0<θ<π),E,F分别为BC,AO的中点(1)求证:EF∥平面ABD(2)若θ=,求二面角F﹣BD﹣O的余弦值.19.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.20.已知椭圆C:=1(a>b>0)过点A(0,3),与双曲线=1有相同的焦点(1)求椭圆C的方程;(2)过A点作两条相互垂直的直线,分别交椭圆C于P,Q两点,则PQ是否过定点?若是,求出定点的坐标,若不是,请说明理由.21.已知函数f(x)=8a2lnx+x2+6ax+b(a,b∈R)(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x,求a,b的值;(2)若a≥1,证明:∀x1,x2∈(0,+∞),且x1≠x2,都有>14成立.[选修4-4:参数方程与极坐标系]22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2﹣2ρcosθ﹣4=0(1)若直线l与曲线C没有公共点,求m的取值范围