预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共70页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

解方程解方程(精选16篇)解方程篇1教学目标:1、学会利用等式性质1解方程;2、理解移项的概念;3、学会移项。教学重点:利用等式性质1解方程及移项法则;教学难点:利用等式性质1来解释方程的变形。教学准备:1、投影仪、投影片。2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。教学过程:(一)引入新课:1、上节课的想一想引入新课:等式和方程之间有什么区别和联系?方程是等式,但必须含有未知数;等式不一定含有未知数,它不一定是方程。2、下面的一些式子是否为方程?这些方程又有何特点?①5x+6=9x②3x+5③7+5×3=22④4x+3y=2由学生小议后回答:①、④是方程。分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。我们先来研究最简单的(只含有一个未知数的)的一元一次方程。3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。注意:一次方程可以含有两个或两个以上的未知数:如上例的④。4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)①2x+3=11②y2=16③x+y=2④3y-1=4y6、什么叫方程的解?怎样解方程?关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程(二)、讲解新课:1、等式性质1:出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。强调关键词:"两边"、"都"、"同"、"等式"。2、利用等式性质1解方程:x+2=5分析:要把原方程变形成x=?只要把方程两边同时减去2即可。注意:解题格式。例1解方程5x=7+4x分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。(解略)解完后提问:如何检验方程时的计算有没有错误?(由学生回答)只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)观察前面两个方程的求解过程:x+2=55x=7+4xx=5-25x-4x=7思考:⑴把+2从方程的一边移到另一边,发生了什么变化?⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)3、移项:从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。注意:①移项要变号;②移项的实质:利用等式性质1对方程进行变形。例2解方程:3x+4=2x+7解:移项,得3x-2x=7-4,合并同类项,得x=3。∴x=3是原方程的解。归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。练习:书本105页1(口答),2(板演),想一想。(三)、课堂小结:①什么是一次方程,一元一次方程?②等式性质1(找关键词);③移项法则;④应用等式性质1的注意点(例2归纳的三条)。(四)、布置作业:见作业本。§5.2解方程(2)教学目标1.通过分析具体问题中的数量关系,了解到解方程作为运用方程解决实际问题的需要.正确理解和使用乘法分配律和去括号法则解方程.2.领悟到解方程作为运用方程解决实际问题的组成部分.3.进一步体会同一方程有多种解决方法及渗透整体化一的数学思想.4.培养学生热爱数学,独立思考,与合作交流的能力,领悟数学来于实践,服务于实践.教学重点:正确去括号解方程教学难点:去括号法则和分配律的正确使用.教学设计教师活动学生活动说明教师引入(读教材156页引例),教师引导学生根据画面内容探讨解决问题的方法.针对学生情况,如有困难教师直接讲解.如果设1听果奶x元,那么可列出方程4(x十0.5)+x=20-3教师组织学生讨论教材“想一想”中的内容①首先鼓励学生通过独立思考,抓住其中的等量关系:买果奶的钱+买可乐的钱=20-3,然后鼓励学生运用自己的方法列方程并解释其中的道理.出示例题3并引导学生探讨问题的解决方法.引导学生对自己所列方程的解的实际意义进行解释.出示随堂练习题,鼓励学生大胆互评.出示例题4,教师首先鼓励学生独立探索解法,并互相交流.然后引导学生总结,此方程既可以先去括号求解,也可以视作关于(x-1)的一元一次方程进行求解.(后一种解法不要求所有学生都必须掌握.)出示随堂练习题.出示自编练习题:下面方程的解法对不