预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

任意四边形的中点四边形的教学设计清流县城关中学——魏水林教学目标:1.激发学生的学习兴趣,培养学生勇于探索、勇于创新的精神。2.培养学生独立分析问题、解决问题的能力以及研究能力和创新意识。3.理解中点四边形的概念,掌握中点四边形判定、证明及应用。教学重点:中点四边形形状判定和证明教学难点:对确定中点四边形形状的主要因素的分析和概括教学方法:自主合作式教学教学手段:电脑、多媒体课件教学过程阶段一:学生活动——引入、基本概念活动要求:学生以小组形式对问题一一进行探讨,发言老师指导:教师指导小结设计意图:因学生对平行四边形一章学得较好,问题1起点较高,重在培养学生的逆向思维,提高学生的学习兴趣。复习:(四边形的知识)研究问题1:如图,在四边形ABCD中,E、F分别为AB、BC边上的中点,你能否分别在CD、DA边上找到点G、H,使四边形EFGH为平行四边形说明理由。(或如图ABCD为一个四边形纸片,E、F分别为AB、BC的边上的中点,以EF为边能否折叠出一个平行四边形EFGH,使顶点G、H分别在CD、DA边上若能,说明理由)阶段二:学生活动——基础问题研究活动要求:完成对问题一研究[发现、证明]的过程,老师指导:指导部分学生研究问题设计意图:通过电脑的动画效果,给学生创造一个发现问题、解决问题的情境。目的在于激发学生的学习兴趣,培养学生“观察、发现、猜想、证明”问题的数学思想和能力。活动流程:观察发现猜想证明迁移旧知识掌握知识、提高能力中点四边形的定义:如图,四边形ABCD的各边的中点,所构成的四边形EFGH叫做四边形ABCD的中点四边形。研究:利用课件变换四边形ABCD形状……1、发现:无论四边形ABCD的形状怎么变化,中点四边形EFGH的形状始终为平行四边形。2、证明:(证法一)连接AC∵E、F分别为AB、BC的中点∴EF∥AC,EF=1/2AC同理HG∥AC,HG=1/2AC∴EF∥HG且EF=HG∴四边形EFGH为平行四边形(证法一)连接AC、BD∵E、F分别为AB、BC的中点∴EF∥AC同理HG∥AC∴EF∥HG同理FG∥HE∴四边形EFGH为平行四边形归纳:任意一个四边形的中点四边形,都为平行四边形阶段三:学生活动——问题的研究和概括活动要求:用“一般│特殊│一般”的方法发现和研究问题,概括出确定中点四边形ABCD形状的主要因素。老师指导:引导学生发现问题、提出问题并指导学习能力较弱的学生研究问题。设计意图:利用电脑的大容量使学生能够在较短的时间内对问题进行多方面地研究。培养学生“从一般到特殊再到一般”的研究问题的方法和概括能力。研究问题2:特殊四边形的中点四边形的形状活动流程:发现问题实验、研究问题结论概括特殊一般1、发现问题(特殊四边形):在上一阶段研究的基础上,利用课件变换四边形ABCD形状,使四边形ABCD分别为平行四边形、矩形、菱形、正方形和等腰梯形,研究中点四边形EFGH形状。发现:中点四边形的形状有矩形、菱形和正方形问题:决定中点四边形EFGH的形状的主要因素是四边形ABCD的边角对角线……2、研究问题(一般四边形):反之若中点四边形EFGH分别为矩形、菱形和正方形,则四边形ABCD是否一定分别为菱形、矩形(等腰梯形)、正方形3、概括规律:决定中点四边形EFGH的形状的主要因素是四边形ABCD的对角线的长度和位置。若对角线AC=BD,则四边形EFGH为菱形;若对角线AC⊥BD,则四边形EFGH为矩形;若对角线AC=BD,AC⊥BD,则四边形EFGH为正方形。用“一般│特殊│一般”的方法发现和研究问题,概括出确定中点四边形ABCD形状的主要因素。引导学生发现问题、提出问题并指导学习能力较弱的学生研究问题。阶段四:学生活动——发散和创新活动要求:利用电脑1、拖动A点使四边形ABCD的图形变化进行研究。2、变化E、F、G、H点的条件进行研究。老师指导:老师引导设计意图:培养学生的发散思维能力,提高学生研究数学的兴趣和创新意识。1、图形发散“实验”:利用计算机对图形进行变换“实验”实验一实验三实验二经过以上实验,当ABCD是上面的图形时四边形EFGH仍为平行四边形。特别是“实验三”,四边形EFGH可以看作四边形ADBC的边AD、BC的中点和对角线AB、CD的中点的四边形,这样就引出了新的问题。2、条件发散:(1)如图:E、F、G、H分别为各边的四等份点,则四边形EFGH为平行四边形(2)如图:E、F分别AB、BC边的四等份点,G,H分别为边CD、DA的中点,则四边形EFGH为梯形。……阶段五:学生活动——简单应用活动要求:学生分析老师指导:老师精点设计意图:培养学生对新知识灵活的应用的能力。应用1:如图,梯形ABCD中,AB∥CD,M是AD中点,N是BC中点,E是CD中点,F是AB中点。若EF=MN,则BD⊥ME;若