预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

“中点四边形”教学设计“中点四边形”教学设计作为一位无私奉献的人民教师,编写教学设计是必不可少的,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编收集整理的“中点四边形”教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。“中点四边形”教学设计1一、学习目标:1、了解中点四边形的概念2、灵活应用三角形的中位线性质研究中点四边形与原四边形的关系。二、学习重点、难点1、重点:研究中点四边形与原四边形的关系;2、难点:找出中点四边形与原四边形的形状的变化规律。三、学习过程:(一)、复习:三角形的中位线性质:利用右图用几何语言表示(二)、练习:1.证明:顺次连结四边形的各边中点所组成的四边形(简称中点四边形)是平行四边形。已知:求证:2、与周围的同学交流一下证明方法。从以上的证明过程中可知:中点四边形的边与原四边形的对角线有密切关系。3、通过画图猜想:顺次连结矩形的各边中点所组成的四边形是什么形状?请证明你的结论。4、回味刚才的证明过程,想一想:要使中点四边形是菱形,原四边形一定要是矩形吗?由此可得:只要原四边形的两条对角线,就能使中点四边形是菱形。5、通过画图猜想:顺次连结菱形的各边中点所组成的四边形是什么形状?请证明你的结论。6、回味刚才的证明过程,想一想:要使中点四边形是矩形,原四边形一定要是菱形吗?由此可得:只要原四边形的两条对角线,就能使中点四边形是矩形。7、讨论一下:要使中点四边形是正方形,原四边形要符合的条件是8、小结:(1)中点四边形最起码是一个;(2)原四边形的对角线与中点四边形的边有密切关系:原四边形的两条对角线相等中点四边形的邻边也中点四边形是形原四边形的两条对角线垂直中点四边形的邻边也中点四边形是形原四边形的两条对角线垂直且相等中点四边形的邻边也中点四边形是形作业:1、顺次连结等腰梯形的各边中点所组成的四边形是特殊的平行四边形吗?证明你的结论。2、中点四边形的面积与原四边形的面积之比是。第Ⅱ部分反思一、教材地位与学案的设计思想这节课的内容安排在华东师大版教材的九年级下册第27章证明一章后的课题学习,这样的安排很恰当,学生刚刚学完了用推理的方法研究三角形和四边形。这节课的内容是三角形中位线的应用,也是对特殊平行四边形性质、判定的巩固,还是对学生研究变式图形能力的训练--------这是一个动态图形的系列问题:无论原来的四边形的形状怎样改变,顺次连结它各边的中点所得的四边形最起码是平行四边形。而且平行四边形又包含了矩形、菱形、正方形,这时,原四边形要作怎样的变化呢?通过这节课的学习,使学生对中点四边形与原四边形的形状的变化规律有一个系统的认识。学生往往不重视课题学习或找不到方法去研究这个课题。而这节课的学案设计就是为学生研究这个课题在方法上搭建了一个平台。在使用旧人教版的时候,为使学生对中点四边形与原四边形的形状的变化规律有一个系统的认识,也曾这样设计:在每个学生一台电脑的网络室利用《几何画板》教师先做两个页面,第一页原四边形设计为平行四边形,第二页原四边形设计为任意四边形。学生只需用鼠标拖动原四边形或中点四边形的一个顶点,就可实现动画。两页都有辅助线(原四边形的对角线)的显示/隐藏按钮。每个同学须填写一份实验报告。实验报告的问题设计如下:在学生完成前12分钟的实验后,教师利用实物投影仪展示一些同学的证明过程、小结实验情况、对比证明方法,让学生明确“四边形EFGH的形状的变化与原四边形的两条对角线有着密切的关系”----为下一阶段的实验铺路。第二阶段的实验有足够的时间让学生操作,而且绝大多数同学能遵循题目的暗示将中点四边形EFGH进行动画,通过中点四边形EFGH形状的改变来观察原四边形ABCD的变化。所以第1题完成情况良好,又为第二题铺平了道路。最后由同学自荐所出题目,公认最好的作为作业布置。二、课堂实施情况对比两种设计方案的实施情况:①实验报告的设计没有在文字上给学生具体方法的指导,普通班相当一部分学生在实验的第二阶段中不知怎样证明自己所得的结论,也正因为如此给成绩好的学生留下了较大的思维空间;学生不用自己画图节省了时间。但也留下了缺憾------怎样画出符合题意的示意图也是要训练的,而且在画图的过程中还能对题意有更深的理解。当时在重点班的实施效果较好,普通班的实施情况不理想------大约一半学生达不到实验的预期目的。②学案(第一稿)的设计弥补了实验报告的不足,由于设计时多种情况都让学生从熟悉的图形:矩形、菱形入手,证明它们的中点四边形分别是菱形、矩形。然后通过“回味刚才的证明过程,”让学生注意到在证明过程中运用了矩形、菱形的对角线相等、对角线互相垂直的性质,而没有用对角线互相平分的性质,从而把图形变式,将特殊情况予以推广。