预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2015-2016学年辽宁省沈阳二中高三(上)期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则(∁UA)∩B=()A.∅B.{x|<x≤1}C.{x|x<1}D.{x|0<x<1}2.设复数z=1+i(i是虚数单位),则复数z+的虚部是()A.B.iC.D.i3.设a=2﹣0.5,b=log20152016,c=sin1830°,则a,b,c的大小关系是()A.a>b>cB.a>c>bC.b>c>aD.b>a>c4.已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣15.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件6.已知Sn是等差数列{an}的前n项和,若a7=9a3,则=()A.9B.5C.D.7.将函数y=sin(4x﹣)图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.B.x=C.x=D.x=﹣8.某几何体的三视图如图所示,则这个几何体的体积为()A.4B.C.D.89.函数的图象大致是()A.B.C.D.10.在△ABC中,a,b,c分别为∠A、∠B、∠C、的对边,若向量和平行,且,当△ABC的面积为时,则b=()A.B.2C.4D.2+11.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.3a﹣1B.1﹣3aC.3﹣a﹣1D.1﹣3﹣a12.如图,正五边形ABCDE的边长为2,甲同学在△ABC中用余弦定理解得,乙同学在Rt△ACH中解得,据此可得cos72°的值所在区间为()A.(0.1,0.2)B.(0.2,0.3)C.(0.3,0.4)D.(0.4,0.5)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设sin2α=﹣sinα,α∈(,π),则tanα的值是__________.14.已知变量x,y满足,则的取值范围是__________.15.如图数表,为一组等式:某学生根据上表猜测S2n﹣1=(2n﹣1)(an2+bn+c),老师回答正确,则a﹣b+c=__________.16.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分别为AB、BC的中点.点P在以A为圆心,AD为半径的圆弧上变动(如图所示),若=λ+μ,其中λ,μ∈R.则2λ﹣μ的取值范围是__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知函数(1)求函数f(x)的单调递增区间;(2)△ABC内角A,B,C的对边分别为a,b,c,若,b=1,,且a>b,试求角B和角C.18.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.(1)求证:PC∥平面BDE;(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.19.设数列{an}的前n项和为Sn,且2an=Sn+2n+1(n∈N*).(Ⅰ)求a1,a2,a3;(Ⅱ)求证:数列{an+2}是等比数列;(Ⅲ)求数列{n•an}的前n项和Tn.20.“水资源与永恒发展”是2015年联合国世界水资源日主题.近年来,某企业每年需要向自来水厂缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C(单位:万元)与安装的这种净水设备的占地面积x(单位:平方米)之间的函数关系是C(x)=(x≥0,k为常数).记y为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.(Ⅰ)试解释C(0)的实际意义,请建立y关于x的函数关系式并化简;(Ⅱ)当x为多少平方米时,y取得最小值?最小值是多少万元?21.设函数的图象在点(x,f(x))处的切线的斜率为k(x),且函数为偶函数.若函数k(x)满足下列条件:①k(﹣1)=0;②对一切实数x,不等式恒成立.(Ⅰ)求函数k(x)的表达式;(Ⅱ)求证:(n∈N*).22.已知函数f(x)=﹣x2+2lnx.(Ⅰ)求函数f(x)的最大值;(Ⅱ)若函数f(x)与g(x)=x+有相同极值点,(i)求实数a的值;(ii)若对于“x1,x2∈[,3]