预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第4周教学反思:上周我们学习的内容是两个计数原理和排列与组合,两个计数原理大部分学生能掌握,但有少部分学生在做题时,分不清楚题目是哪一种原理,容易混淆;排列与组合做题时同学们对题目分析不透彻,因而搞不清在什么时候排列,在什么时候组合。对于这一问题,在教学中多教同学们分析题目,看题目是否与顺序有关,若有关,则排列,若无关则组合。教案-庞升权-选修2-2总复习-2018春季第5周高中选修2-2数学知识点第一章导数及其应用教学目标:1.重点理解导数相关概念;2.掌握选修2-2的知识点3.利用选修2-2知识解决简单问题教学重点:利用导数研究与函数有关的简单问题,掌握推理证明的证明方法,会计算与复数有关的简单问题。教学难点:用所学知识点解决常见问题。授课类型:复习课课时安排:4课时知识点1.函数的平均变化率为注1:其中是自变量的改变量,可正,可负,可零。注2:函数的平均变化率可以看作是物体运动的平均速度。2、导函数的概念:函数在处的瞬时变化率是,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。4导数的背景(1)切线的斜率;(2)瞬时速度;5、常见的函数导数函数导函数06、常见的导数和定积分运算公式:若,均可导(可积),则有:和差的导数运算积的导数运算特别地:商的导数运算特别地:复合函数的导数微积分基本定理(其中)和差的积分运算特别地:积分的区间可加性用导数求函数单调区间的步骤:①求函数f(x)的导数②令>0,解不等式,得x的范围就是递增区间.③令<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。(2)求函数f(x)的导数(3)求方程=0的根(4)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值8.利用导数求函数的最值的步骤:求在上的最大值与最小值的步骤如下:⑴求在上的极值;⑵将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;9.求曲边梯形的思想和步骤:分割近似代替求和取极限(“以直代曲”的思想)10.定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1性质5若,则①推广:②推广:11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.(l)当对应的曲边梯形位于x轴上方时,定积分的值取正值,且等于x轴上方的图形面积;(2)当对应的曲边梯形位于x轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;当位于x轴上方的曲边梯形面积等于位于x轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积.12.物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功。第二章推理与证明知识点13.归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。归纳推理的思维过程大致如图:实验、观察概括、推广猜测一般性结论15.归纳推理的特点:①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。16.类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。17.类比推理的思维过程观察、比较联想、类推推测新的结论18.演绎推理的定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。19.演绎推理的主要形式:三段论20.“三段论”可以表示为:①大前题:M是P②小前提:S是M③结论:S是P。其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。21.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。22.综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。23.分析法就是从所要证明的结论出发