预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

武威五中2017-2018学年度第一学期第三次考试高一年级数学满分150分时间120分钟命题人:刘俊选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的选项,请将正确选项填涂到答题卡的指定位置.)[§xx§k.Com]1、设,那么等于()A.B.C.D.2、函数的零点所在的区间是()A.B.C.D.3、某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱4、一个几何体的三视图如图所示,则该几何体的表面积为()4题图A.3πB.4πC.2π+4D.3π+45、已知A,B,C表示不同的点,L表示直线,α,β表示不同的平面,则下列推理错误的是()A.A∈L,A∈α,B∈L,B∈α⇒L⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.L⊄α,A∈L⇒A∉αD.A∈α,A∈L,L⊄α⇒L∩α=A6、如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()7、用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b其中真命题的序号是()A.①②B.③C.①③D.②8、设α,β是两个不同的平面,L,m是两条不同的直线,且L⊂α,m⊂β.()A.若L⊥β,则α⊥βB.若α⊥β,则L⊥mC.若L∥β,则α∥βD.若α∥β,则L∥m9、一几何体的直观图如图,下列给出的四个俯视图中正确的是()10、将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为()11、如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为()A.1B.eq\f(1,2)C.eq\f(1,3)D.eq\f(1,6)12、如图是一个体积为10的空间几何体的三视图,则图中x的值为()A.2B.3C.4D.5二、填空题(本大题共4小题,每小题5分,共20分,请将正确答案填写到答题卡的指定位置.)13、一个棱长为2cm的正方体的顶点都在球面上,则球的体积为_______cm³.14、在正方体ABCD­A1B1C1D1中,E,F分别是棱A1B1,A1D1的中点,则A1B与EF所成角的大小为________.15、已知直三棱柱ABC­A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为________.16、P为△ABC所在平面外一点,且PA、PB、PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正确的个数是________.三、解答题:(本大题6小题,17小题10分,18—22小题,每题12分,共70分.解答应写出文字说明,演算步骤或证明过程.将解答写在答题卡的指定位置.)17、若函数f(x)=|2x-2|-b有两个零点,求实数b的取值范围.18、已知函数f(x)=lnx+2x,若f(x2-4)<2,求实数x的取值范围.19、某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,求该食品在33℃的保鲜时间.20、如图,△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,FC=4,AE=5,求此几何体的体积.21、一几何体按比例绘制的三视图如图所示:(1)试画出它的直观图;(2)求它的表面积和体积.22、如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EA=BF∶FD,求证:EF∥平面PBC.高一数学答案1--12BCADCDDABCDA13、4eq\r(3)πeq\f(π,3)eq\f(13,2)①②③17、[解析](2)由f(x)=|2x-2|-b=0得|2x-2|=b.在同一平面直角坐标系中画出y=|2x-2|与y=b的图象,如图所示,则当0<b<2时,两函数图象有两个交点,从而函数f(x)=|2x-2|-b有两个零点.所以b的取值范围是0<b<218、解析:因为函数f(x)=lnx+2x在定义域上单调递增,且f(1)=ln1+2=2,所以由f(x2-4)<2得,f(x2-4)<f(1),所以0<x2-4<1,解得-eq\r(5)<x<-2或2<x<eq\r(5).19、解析:由已知条件,得192=eb,所以b=ln192.又因为48=e22k+b=e22k+ln192=192e22k=192(e11k)2,所以e11k=