预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2019~2020学年高二第一学期期末考试数学试卷考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教版必修3第二章、第三章,选修2-1,选修2-3.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某工厂10名工人某天生产同一型号零件的件数分别是15,17,14,10,15,17,17,16,14,12,则这组数据的众数为()A.17B.16C.15D.14.7【答案】A【解析】【分析】根据同一型号零件的数据,结合众数的概念,即可求解,得到答案.【详解】由题意,同一型号零件的件数分别是15,17,14,10,15,17,17,16,14,12,结合众数概念,可得数据的众数为17.故选:A.【点睛】本题主要考查了众数的概念及其应用,其中解答中熟记众数的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2.已知,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】由不等式,解得或,再结合充分条件和必要条件的判定方法,即可求解,得到答案.【详解】由题意,可得不等式,可转化为,解得或,所以p是q的充分不必要条件.故选:A.【点睛】本题主要考查了分式不等式的求解,以及充分条件、必要条件的判定,其中解答中熟记分式不等式的解法,以及充分条件和必要条件的判定方法是解答的关键,着重考查了推理与运算能力,属于基础题.3.已知某团队有老年人28人,中年人56人,青年人84人,若按老年人,中年人,青年人用分层抽样的方法从中抽取一个容量为12的样本,则从中年人中应抽取()A.2人B.3人C.5人D.4人【答案】D【解析】【分析】根据题设求得中年人所占的比例,进而求得中年人抽取的人数,得到答案.【详解】根据题设知,中年人所占的比例为,所以在抽取的一个容量为12的样本中,中年人中应抽取人.故选:D.【点睛】本题主要考查了分层抽样的概念及其应用,其中解答中熟记分层抽样的概念,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.4.已知双曲线的一条渐近线垂直于直线,则该双曲线的离心率为()A.B.2C.5D.【答案】D【解析】【分析】先由渐近线为与直线垂直,求得,再结合双曲线的离心率的概念,即可求解.【详解】由题意,不妨设双曲线的一条渐近线为,因为渐近线为与直线垂直,则,又由.故选:D.【点睛】本题主要考查了双曲线的标准方程,及其简单的几何性质的应用,其中解答中熟记两条直线的位置关系的判定方法,以及双曲线的几何性质是解答的关键,着重考查了推理与运算能力,属于基础题.5.六名同学站一排照相,要求,,,三人按从左到右的顺序站,可以不相邻,也可以相邻,则不同的排法共有()A.720种B.360种C.120种D.90种【答案】C【解析】【分析】首先计算六名同学并排站成一排的总数,然后除以A,B,C三人的排列数即可得答案.【详解】根据题意,六名同学并排站成一排,有种情况,其中,,三人顺序固定,按从左到右的顺序站,则不同的排法数为,故选C.【点睛】本题考查倍缩法的应用,对应某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数即可.6.在空间直角坐标系中,已知,,,,则直线AD与BC的位置关系是()A.平行B.垂直C.相交但不垂直D.无法判定【答案】B【解析】【分析】根据题意,求得向量和的坐标,再结合空间向量的数量积的运算,即可得到两直线的位置关系,得到答案.【详解】由题意,点,,,,可得,,又由,所以,所以直线AD与BC垂直.故选:B.【点睛】本题主要考查了空间向量的数量积的运算及其应用,其中解答中熟记空间向量的坐标运算,以及空间向量的数量积的运算是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.的展开式中二项式系数之和是64,含项的系数为,含项系数为,则()A200B.400C.-200D.-400【答案】B【解析】【分析】由展开式二项式系数和得n=6,写出展开式的通项公式,令r=2和r=3分别可计算出a和b的值,从而得到答案.【详解】由题意可得二项式系数和2n=64,解得n=6.∴的通项公式为:,∴当r=2时,含x6项的系数为,当r=3时,含x3项的系数为,则,故选B.【点睛】本题考查二项式定理的通项公式及其