预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016-2017学年江西省南昌市八一中学高三(下)2月月考数学试卷(文科)一、选择题:本大题共12小题,每小题5分.在每个小题给出的四个选项中,只有一项是符合题目要求.1.若集合B={x|x≥0},且A∩B=A,则集合A可能是()A.{1,2}B.{x|x≤1}C.{﹣1,0,1}D.R2.已知方程x2+(4+i)x+4+ai=0(a∈R)有实根b,且z=a+bi,则复数z等于()A.2﹣2iB.2+2iC.﹣2+2iD.﹣2﹣2i3.设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.双曲线C:﹣=1(a>0,b>0)的离心率e=,则它的渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x5.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A.B.C.D.6.如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图是()A.B.C.D.7.已知M是△ABC内的一点,且=2,∠BAC=30°,若△MBC,△MCA和△MAB的面积分别为,x,y,则+的最小值是()A.20B.18C.16D.98.执行如图所示的程序框图,则输出的结果为()A.7B.9C.10D.119.已知实数x,y满足:,若z=x+2y的最小值为﹣4,则实数a=()A.1B.2C.4D.810.已知函数f(x)=sinx+λcosx(λ∈R)的图象关于x=﹣对称,则把函数f(x)的图象上每个点的横坐标扩大到原来的2倍,再向右平移,得到函数g(x)的图象,则函数g(x)的一条对称轴方程为()A.x=B.x=C.x=D.x=11.已知一个平放的各棱长均为4的三棱锥内有一个小球,现从该三棱锥顶端向锥内注水,小球慢慢上浮.当注入的水的体积是该三棱锥体积的时,小球恰与该三棱锥各侧面及水面相切(小球完全浮在水面上方),则小球的表面积等于()A.B.C.D.12.已知函数f(x)=xsinx+cosx+x2,则不等式的解集为()A.(e,+∞)B.(0,e)C.D.二、填空题:本大题共4小题,每小题5分.13.设向量=(4,m),=(1,﹣2),且⊥,则|+2|=.14.若角α满足sinα+2cosα=0,则sin2α的值等于.15.已知直线y=ax与圆C:x2+y2﹣2ax﹣2y+2=0交于两点A,B,且△CAB为等边三角形,则圆C的面积为.16.已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列{an}的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)设bn=(n+1)4﹣,求数列{bn}的前n项和.18.某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.(Ⅰ)根据直方图估计这个开学季内市场需求量x的众数和中位数(四舍五入取整数);(Ⅱ)将y表示为x的函数;(Ⅲ)根据直方图估计利润y不少于4800元的概率.19.如图,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且DF⊥AM,垂足为E,若将△ADM沿AM折起,使点D位于D′位置,连接D′B,D′C,得四棱锥D′﹣ABCM.(1)求证:平面D′EF⊥平面AMCB;(2)若∠D′EF=,直线D′F与平面ABCM所成角的大小为,求几何体A﹣D′EF的体积.20.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1(﹣1,0),F2(1,0),点A(1,)在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)是否存在斜率为2的直线l,使得当直线l与椭圆C有两个不同交点M、N时,能在直线y=上找到一点P,在椭圆C上找到一点Q,满足=?若存在,求出直线l的方程;若不存在,说明理由.21.已知函数f(x)=+alnx(a≠0,a∈R).(1)若a=1,求函数f(x)的极值和单调区间;(2)若在区间(0,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.请考生在第22题和第23题中任选一题作答,作答时请在答题卡的对应答题区写上题号,并用2B铅笔把所选题目对应的题号涂黑