预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017年新疆乌鲁木齐市高考数学二诊试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={x∈Z|﹣x2+3x>0},N={x|x2﹣4<0},则M∩N=()A.(0,2)B.(﹣2,0)C.{1,2}D.{1}2.设复数z=(其中i为虚数单位),则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.设f(x)=,且f(2)=4,则f(﹣2)等于()A.1B.2C.3D.44.某程序框图如图所示,若输出的S=26,则判断框内应填()A.k>3?B.k>4?C.k>5?D.k>6?5.关于直线a,b及平面α,β,下列命题中正确的是()A.若a∥α,α∩β=b,则a∥bB.若a∥α,b∥α,则a∥bC.若a⊥α,a∥β,则α⊥βD.若a∥α,b⊥a,则b⊥α6.已知向量满足||=2,||=1,且()⊥(2﹣),则的夹角为()A.B.C.D.7.已知一个几何体的三视图如图所示(正视图是两个正方形,俯视图是两个正三角形),则其体积为()A.B.C.D.8.先把函数y=sin(x+φ)的图象上个点的横坐标缩短为原来的(纵坐标不变),再向右平移个单位,所得函数关于y轴对称,则φ的值可以是()A.B.C.D.9.在△ABC中,“A<B<C”是“cos2A>cos2B>cos2C”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.在△ABC中,BC=1且cosA=﹣,B=,则BC边上的高等于()A.1B.C.D.11.双曲线上存在一点与其中心及一个焦点构成等边三角形,则此双曲线的离心率为()A.2B.+1C.D.﹣112.定义在R上的函数y=f(x)为减函数,且函数y=f(x﹣1)的图象关于点(1,0)对称,若f(x2﹣2x)+f(2b﹣b2)≤0,且0≤x≤2,则x﹣b的取值范围是()A.[﹣2,0]B.[﹣2,2]C.[0,2]D.[0,4]二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.二项式(ax3+)7的展开式中常数项为14,则a=.14.若2x+4y=4,则x+2y的最大值是.15.过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,已知|AF|=3,|BF|=2,则p等于.16.若ln(x+1)﹣1≤ax+b对任意x>﹣1的恒成立,则的最小值是.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.(12分)已知数列{an}满足an+2=,且a1=1,a2=2.(1)求a3﹣a6+a9﹣a12+a15的值;(2)设数列{an}的前n项和为Sn,当Sn>2017时,求n的最小值.18.(12分)如图,在多面体ABCDEF中,四边形ABCD为边长为4的正方形,M是BC的中点,EF∥平面ABCD,且EF=2,AE=DE=BF=CF=.(1)求证:ME⊥平面ADE;(2)求二面角B﹣AE﹣D的余弦值.19.(12分)学校某文具商店经营某种文具,商店每销售一件该文具可获利3元,若供大于求则削价处理,每处理一件文具亏损1元;若供不应求,则可以从外部调剂供应,此时每件文具仅获利2元.为了了解市场需求的情况,经销商统计了去年一年(52周)的销售情况.销售量(件)10111213141516周数248131384以去年每周的销售量的频率为今年每周市场需求量的概率.(1)要使进货量不超过市场需求量的概率大于0.5,问进货量的最大值是多少?(2)如果今年的周进货量为14,写出周利润Y的分布列;(3)如果以周利润的期望值为考虑问题的依据,今年的周进货量定为多少合适?20.(12分)椭圆C:+=1(a>b>0)的离心率为,过左焦点任作直线l,交椭圆的上半部分于点M,当l的斜率为时,|FM|=.(1)求椭圆C的方程;(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.21.(12分)已知函数f(x)=(ax+1)ex﹣(a+1)x﹣1.(1)求y=f(x)在(0,f(0))处的切线方程;(2)若x>0时,不等式f(x)>0恒成立,求a的取值范围.[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,圆C的方程为(x﹣1)2+y2=,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点M的极坐标为(2,θ),过点M斜率为1的直线交圆C于A,B两点.(1)求圆C的极坐标方程;(2)求|MA|•|MB|的范围.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣4|,g(x)=|2x+1|.(1)解不等式f(x)<g(x);(2)若2f(x)+g(x)>ax对任意的实数x恒成立,求a的取值范围.2017年